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Words from the Editor

Welcome to this year’s third issue of Paradox, the magazine produced by the
Melbourne University Mathematics and Statistics Society (MUMS). A new
committee has been elected since the last issue, and with it a new Editor.

This SMO/Open Day issue is a tribute to Stephen Muirhead, Paradox Editor
of the past six issues. He was flooded with articles from eager contributors
from all over the world, and published issues averaging a never-before-seen
40–50 pages in length. Yours truly has really big shoes to fill!

In this edition, you will discover why Heaven is hotter than Hell, how combi-
natorial game theory can be used to solve simple Go problems, and why an
exodus of New Zealanders to Australia might raise the IQ of both countries.
Also featured are the mathematics behind camming devices, an interview
with a MUMS alumnus, and how one of the founders of statistics was also a
fierce eugenicist.

The problems and solutions that are a regular feature of Paradox have been
put on hold while we work on developing an exciting new way to engage you
with mathematical and logical curiosities and challenges. Similarly, we hope
to develop new regular features over the next few issues and we’d be glad if
you could help us out! Perhaps we could have a new resident cartoonist on
our books. . .

As a student-run magazine, Paradox relies on contributions from people like
you to make it great! Articles, puzzles, reviews, jokes, or anything else even
remotely related to mathematics, statistics, and logic are more than welcome.
Just drop by the MUMS room and ask about Paradox or contact us at our
new email address: paradox.editor@gmail.com.

— Kristijan Jovanoski

It is a mathematical fact that fifty percent of all doctors graduate
in the bottom half of their class.
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Words from the President

Welcome back to MUMS!

Rather than have me tell you what has been happening in MUMS over the
last semester in this President’s report, how about we have a. . .

Surprise test!

1. What colour was our most recently deceased couch? Yes, we have re-
placed it with a new couch thanks to Gil.

2. Who are you likely to find sleeping in the MUMS room in the morning?

3. If anyone, who are you most likely to find in the MUMS room at 1am?

4. What game has recently come to prominence to rival Settlers of Catan?
We still play Settlers too!

5. What is the shape of our new money box? Delicious.

6. What is the answer to everything?

How did you go? Were you able to answer them all? If you don’t know any
of them, it is imperative that you head over to the MUMS room to find out.

In other news, a new semester has just begun and MUMS is looking as good
as ever. Look out for our usual Friday seminars, where we invite guest math-
ematicians to share with you some interesting and fun mathematics. These
talks are aimed at undergraduates so don’t be afraid to see what they are all
about. Look out for our (often orange) posters in the Richard Berry Building.

We will also be running our annual University Maths Olympics later in the
semester, where you get to flex your mathematical muscles as well as your
other muscles.

Feel free to come by the MUMS room in G24 (Richard Berry Building) to
play some games, do some (fun) math, or just to meet other MUMSians. You
might even find out who’s sleeping all the time!

— TriThang Tran
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Which is Hotter: Heaven or Hell?

The temperature of Heaven can be rather accurately computed:1

The light of the Moon shall be as the light of the Sun and the
light of the Sun shall be sevenfold, as the light of seven days.

— Isaiah 30:26

Thus, Heaven receives from the Moon as much radiation as we do from the
Sun, and 7× 7 (49) times as much as the Earth does from the Sun, or roughly
50 times in all. The light we receive from the Moon is 1/10,000 of the light
we receive from the Sun, so we can ignore that. . .

The radiation falling on Heaven will heat it to the point where the heat lost
by radiation is just equal to the heat received by radiation, i.e. Heaven loses
50 times as much heat as the Earth by radiation. Using the Stefan-Boltzmann
Law for Radiation and assuming that the temperature of the Earth is around
298 K (25 ◦C), the temperature of Heaven is found to be 798 K (525 ◦C).

While the exact temperature of Hell cannot be computed:

But the fearful, and unbelieving. . . shall have their part in the
lake which burneth with fire and brimstone.

— Revelations 21:8

But a lake of molten brimstone means that its temperature must be at or
below the boiling point, 444.6 ◦C. Therefore, Heaven at 525 ◦C is hotter than
Hell at 445 ◦C.

— Kristijan Jovanoski

Can you do Division? Divide a loaf by a knife—what’s the an-
swer to that?
— Lewis Carroll, Through the Looking Glass.

1From Applied Optics, Vol. 11, A14, 1972.
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Interview with a MUMS Alumnus

Zhihong Chen graduated in 2008 with a double degree in Science (majoring
in mathematics and statistics) and Commerce (taking economics, finance, and
actuarial subjects). He currently works as a quantitative analyst at Goldman
Sachs in Sydney.

Why did you join MUMS?

Well, I think it was because I knew a lot of people there. When I was in first
year, a lot of friends were from my [International Mathematics] Olympiad
days, and they were a year ahead. Given that they were always in the MUMS
room, it was just easy to hang out with them there. For the first few years
they were always there, and then when they left, I had stuck around long
enough to make friends with the newer group.

So basically, the MUMS room was a place to hang out with friends?

Yeah, when I had nothing else to do. Towards the latter part of the degree,
when people kind of stopped showing up to university, the MUMS room was
always the emergency place! I still keep in touch with them, but less so now
that I’m working full-time, and in another city.

What kind of things did you do in the MUMS room?

We went through phases, but games would be a part of it. Chess was in for a
while, then we switched to Scrabble, and then Settlers [of Catan]. Of course
we did some maths too. Sometimes, we’d discuss maths problems from class.

What was your favourite MUMS event?

Probably SMO (School Maths Olympics). It was good fun organising a com-
petition and raising the profile of maths for high school kids.

How else were you involved in MUMS?

I think in first year I helped out with the problem setting for UMO (University
Maths Olympics). I didn’t really hold any positions in MUMS. I was second
year rep when I did a lot of the stuff for the SMO. I don’t think you need
positions to contribute. There were some reps who never showed up. Ever
[laughs]!
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What happened after that?

Well, I think in later years you start worrying about jobs, internships and stuff
like that, so I found myself less inclined to do anything serious for MUMS in
fourth and fifth year compared to the earlier years. But I still hung around
and helped where needed.

So tell me about your current job at Goldman Sachs. What kind of things
would you do in a typical day?

It’s a bit hard to describe, but just about all investment bank graduates are
called ’analysts’. This is basically the most junior rank. But a more detailed
description of my role is probably a quantitative analyst. I’m the guy who
uses maths to solve financial problems. In a nutshell, I structure trade ideas
using financial instruments. I also analyse historical data, and sometimes
work on mathematical models that we use to price up financial instruments.

Would you say that your maths major has been useful in your current role?

Yes, although I wouldn’t say that any particular thing I learnt at university is
that useful. It’s more about developing the general skill set. Maths students
are meant to be good at problem solving, and that’s the most useful thing to
take into the type of job that I’m in.

So you don’t use any particular maths knowledge in your current role?

As a maths major, you learn a lot of things that will never be used in industry.
But having learnt it preps you in other ways. Basically, it teaches you to think
outside the square and to know how to understand complexity.

What about the usefulness of a maths major for finding jobs generally?

I don’t really know. I know that in finance, people with strong maths back-
grounds generally have many options if they’re resourceful enough to look.

What do you mean by that?

I mean exactly that, Lu. There’s no other way to say it [laughs].

Is this what you imagined yourself doing when you were at university? I
remember you always thought you’d do a PhD in maths.

I think most people end up in places they didn’t expect while they were
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still back at university. I think it’s good to be open-minded to opportunities
and experiences that are offered to you, and not focus on a particular set
path. So no, I didn’t imagine myself doing my current job while I was at
university. But you know, maybe in a few years I’ll be doing something else
that I couldn’t have imagined now.

Now, I happen to know that you have rubbed shoulders with many famous
people. I am referring specifically to Julian Assange and Terence Tao. Can
you tell us about that?

Well, with Julian, I kind of knew him before he became the person he is
today. I didn’t really have much to do with him. He was a member of
MUMS but never more than an acquaintance. Back in the day, he was very
much into maths and problem solving. With Terence, I was his student in
one of his graduate classes when I went on exchange to UCLA (University
of California Los Angeles). There were around twenty of us in the class. He
taught graduate level analysis, a first-year PhD subject.

What was Terence like?

I felt he was relatively shy, but a very organised lecturer. He was brilliant.
And he looked very young. His teaching assistant was his PhD student, but
you could be forgiven for thinking that Terence was the PhD student.

Did you talk about anything in particular with him?

I had a brief chat with him after I had finished the course. He always opened
his office for students who wanted to talk to him, especially those doing his
course. I asked him what it was like being an academic versus working in
industry. He said that it’s really up to the individual and what they want.
He mentioned that his brother was working in Google and was pretty happy
there. But he thought that academia was a good life as well.

You asked for his autograph—how did you work up the courage to do that?

I just asked him. He does get a few requests here and there. There were
a couple of students who came into our class after the last lecture and am-
bushed him for a photograph. I thought the autograph was enough. I didn’t
feel the need to prove that I was in his class.

— Lu Li
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Biography: Karl Pearson (1857–1936)

Students the world over have the English math-
ematician Karl Pearson to thank for founding
the world’s first statistics department in 1911 at
University College London. His many contribu-
tions to statistics include the correlation coeffi-
cient, p-value, and chi-square test. As a fellow
of the Royal Society and protégé of the poly-
math Francis Galton,1 he believed that his men-
tor, and not Charles Darwin, would be remem-
bered as the greatest grandson of the scientist
Erasmus Darwin.

When the 23 year-old Albert Einstein started a
study group, the Olympia Academy, with two of his younger friends in 1902,
the first book they read was Pearson’s The Grammar of Science, whose ideas
on relativity significantly influenced the theories Einstein would later put for-
ward. Pearson claimed that the laws of nature were relative to the observer
and that natural processes merely seemed irreversible as a purely relative
conception of the human mind. He also claimed that someone who trav-
els faster than light would see a time reversal and that if they did travel at
the exact same speed, they would see an eternal now, that is, an absence of
motion.

Born Carl Pearson in London, he inadvertently changed the spelling of his
first name to Karl when he enrolled in the University of Heidelberg but later
stuck with that name. He took his mentor’s ideas on eugenics much fur-
ther and more aggressively, applying Social Darwinism to entire nations and
openly advocating war against what he deemed to be inferior races:

No degenerate and feeble stock will ever be converted into healthy and
sound stock by the accumulated effects of education, good laws, and san-
itary surroundings. Such means may render the individual members of a
stock passable if not strong members of society, but the same process will
have to be gone through again and again with their offspring, and this
in ever-widening circles, if the stock, owing to the conditions in which
society has placed it, is able to increase its numbers.2

1See Great Lives in Paradox Issue 1, 2011 for more information on Galton’s life.
2Introduction, The Grammar of Science.
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To him, of course, the solution was obvious:

History shows me one way, and one way only, in which a high state of
civilization has been produced, namely, the struggle of race with race,
and the survival of the physically and mentally fitter race. If you want
to know whether the lower races of man can evolve a higher type, I fear
the only course is to leave them to fight it out among themselves, and
even then the struggle for existence between individual and individual,
between tribe and tribe, may not be supported by that physical selection
due to a particular climate on which probably so much of the Aryan’s
success depended. . . 3

Yet interestingly, he was regarded in his lifetime as a freethinker and a so-
cialist, giving lectures on Karl Marx and issues like women’s suffrage. He
refused a Knighthood because of his commitment to socialism and his ideals.
But then again, it seems that some animals are more equal than others. . .

— Kristijan Jovanoski

‘Every minute dies a man, Every minute one is born;’ I need
hardly point out to you that this calculation would tend to keep
the sum total of the world’s population in a state of perpetual
equipoise, whereas it is a well-known fact that the said sum
total is constantly on the increase. I would therefore take the
liberty of suggesting that in the next edition of your excellent
poem the erroneous calculation to which I refer should be cor-
rected as follows: ‘Every moment dies a man, And one and a
sixteenth is born.’ I may add that the exact figures are 1.067,
but something must, of course, be conceded to the laws of me-
tre.
— Charles Babbage, in a letter to Alfred, Lord Tennyson about
a couplet in his The Vision of Sin.

3National Life from the Standpoint of Science, 1905.
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Let’s Play Some Go

‘Cut first think later!’

Go is an ancient board game originating from China with a recorded history
from over 3000 years ago, although it probably dates back even further to
over 4000 years ago. It is a beautiful game of skill, intuition, and elegance.

Its name comes from the Japanese name igo, literally meaning ‘surrounding
game’. Similarly, the Chinese name wei-qi literally means ‘surrounding chess’.
It is not surprising then that the aim of the game is to surround things. Two
players, Black and White, take alternate turns placing stones on the intersec-
tions of a 19× 19 board, aiming to accumulate points by surrounding either
empty intersections (territory) or enemy stones (prisoners).1

Now that we know what Go is, here is a simple Go problem:

Who wins?

While we can answer this by just reading ahead and counting, let us do it
another way with some combinatorial game theory. We will see that the
amount of ‘looking ahead’ will be somewhat reduced. For larger and more
complicated examples, this will be even more important.

1For the rules, see http://www.gokgs.com/tutorial/. If you actually want to play the game,
see http://gogameguru.com/learn-go-easy-way-go-game-1/. Alternatively, come to the MUMS
room and ask me how to play!
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Solving the problem

The first thing we might notice is that the problem naturally splits off into
disjoint regions. We identify them by shading:

A

B
C

D
E

Separating the board

The goal now is to somehow solve each region individually and ‘sum’ them
up afterwards. Combinatorial game theory (CGT) is the basic tool in this
game. It was invented in the 1960s-70s by Elwyn Berlekampe, John Conway,
and Richard Guy specifically to deal with situations where we can break up
a game into simpler games. For us, a combinatorial game G (or just a game) is
an object of the form G = {GL|GR} where GL and GR are sets of games.

Argh, this definition is recursive! You might say that we cannot define a
game in terms of games. However, there is no real problem, since we always
have empty sets, which yield the initial game {|}, with which we begin the
construction of other games. We shall call this game {|} := 0.

example{ 0 | }{|0}{0|0}areallgames.

Just to simplify things, we shall also insist that our game is finite and does
not loop.

To interpret these objects as ‘real’ games, we imagine two players, Left and
Right, playing a game G. On their turn, Left chooses a game in GL with
which to replace the game G. We often refer to the games in GL as Left
options. Similarly, GR are Right options. A player is said to lose when it is
their turn and they are unable to move. That is, their set of options is empty.



Page 14 Issue 3, 2011 Paradox

We can also add games!

The way we define additions of two games is to play them side by side. When
it is their turn, each player can choose options from either board. Symboli-
cally, if G = {GL|GR}, and H = {HL|HR}, we define their sum to be:

G + H = {(GL + H), (G + HL)|(GR + H), (G + HR)}.

A game is called a zero game if it is a second mover win. In other words, no
one wants to move first in a zero game. We can also define the negative of
a game. Given a game G, we can define −G to be the game {−GR| − GL},
i.e. the game G where Left and Right swap positions. In a game of Go, this
would happen if we swapped the white and black stones.

Fortunately with these definitions, 0 = {|} is a zero game—whoever moves
first cannot make a move and so loses. Moreover, G + (−G) is also a zero
game. To see that the second player can always win, just observe that they
can play the copycat strategy. Whatever the first player does on G (−G), the
second can copy on −G (G). In this way, the second player always has a
move, and since the game is finite the first player eventually loses.

We shall say that two games H and G are equal if H − G is a zero game. In
particular, this lets us conveniently write G− G = G + (−G) = 0.

For those of you who have read Mark’s previous Paradox article on The mon-
ster,2 you will realise that what we are defining is a group! Once one checks
that the addition is associative, then the set of games under the equivalence
relation = forms an abelian group.

The study of combinatorial games has also been used to solve mathematical
games such as Nim and Hackenbush. There has even been progress made on
more popular games such as Go and Chess, although there are some difficul-
ties, particularly with the latter since it is not readily seen as a combinatorial
game. Furthermore, in his book On Numbers and Games, Conway studies a
subclass of games called Surreal Numbers. This subclass has some amazing
properties: it is a well-ordered field that contains, for example, real numbers,
ordinals, as well as infinitesimals.

2See Mark Kowarsky’s Group theory could save your life in Paradox Issue 1, 2010.
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Solving our original problem

Let us get back to the problem at hand. In order to view Go as a combinatorial
game, we need to think of it as a last mover win game. One can do this by
realising that the territory one surrounds essentially gives one extra move per
point of territory. If we adopt Chinese rules for counting, i.e. we count stones
as well as empty intersections, then Go essentially becomes a combinatorial
game.3

While the board is initially far too open to break up nicely into individual
games, once we reach the late endgame of Go, we often get many separate
disjoint regions. It is now that one might hope to apply the power of CGT,
although even now it is often difficult and an area of ongoing research.

Our problem is actually a very simple endgame problem that nicely yields to
CGT. In fact, in our case, we do not even need most of the language that we
developed earlier.

Let us have another look at the board:

A

B
C

D
E

We can now think of each region as its own game. The unshaded regions are
already secure territory. In particular, Black has 5 secured points of territory,
while White has 7. We now need to work out what happens in the open
corridors and this is where CGT comes in. Observe D = −C as a game, since
it is essentially the same position with Black and White reversed. Similarly,

3For more on how this works, read the book Mathematical Go: Chilling Gets the Last Point by
Berlekampe and Wolfe.



Page 16 Issue 3, 2011 Paradox

B = −A. Therefore, the game simplifies as:

A + B + C + D + E = 0 + 0 + E = E.

Since we do not need to worry about what happens on 0 (no player wants
to move first in a zero game), what is left is to decide what happens on E.
If Black moves first, then Black closes the corridor and secures an additional
3 points. If White moves first, then White is able to make one approach
move before Black closes the corridor, meaning that Black only secures an
additional 2 points.

Thus, if White moves first, White can draw. But if Black moves first, then
Black can win by one point!

Beyond this example. . .

For a more rigorous introduction to mathematical Go, a good way to start is
to read Mathematical Go: Chilling Gets the Last Point by Berlekampe and Wolfe,
where they solve many more Go endgame problems and situations.

— TriThang Tran

Three recent graduates are invited for an interview: one has
a degree in pure mathematics, another one in applied mathe-
matics, and the third one in statistics. All three are asked the
same question: ‘What is one third plus two thirds?’
The pure mathematician: ‘It’s one.’
The applied mathematician takes out his pocket calculator,
punches in the numbers, and replies: ‘It’s 0.999999999.’
The statistician: ‘What do you want it to be?’
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Mathematics in Climbing

I recently visited www.totemcams.com for camming devices. Impressively,
this site provides the mathematics behind their devices, which I shall now
explain.

Camming devices

A camming device is an item of active protection gear for trad climbing.
Unlike traditional pitons or nuts, it can be placed on parallel cracks with one
hand. Introduced in the mid-1970s, it opened many traditionally unprotected
routes to new generations of climbers and it is now a must-have on any
climber’s rack.

Figure 1: Some traditional camming device designs.

Most designs have four blades or lobes called cams that are mounted on one
or two axles so that a pull on an axle spreads the cams apart.1 Each cam
can be retracted by pulling on a trigger on a single stem that is attached to
the axle as in Figure ??. By pulling on a trigger, the profile of the device

1Cox SM, Fulsaas K. Mountaineering: Freedom of the Hills. Seattle: Mountaineers Books, 2003.
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becomes more narrow, allowing one to place it in a crack. Once released,
each cam expands to fill the gap. Therefore, when a climber falls on the
device, the force pulls on the central stem and spreads the four cams apart.
This increases the friction force on the rock and prevents a ground fall.

The cam shape

Figure 2: Parametrising the
distance between the contact
point and the centre of the
axle.

During such a fall, the force is transferred
to the axle of each cam. By ensuring that
the position of the axle is above its contact
point with the wall as in Figure ??, there is
enough frictional force to hold the fall. This
depends only on the shape of each cam. The
angle α shown in Figure ?? is called the cam
angle.

It turns out that α remains constant, regard-
less of the angle θ between the cam’s ac-
tual contact point and the minimal contact
point. By using polar coordinates, we may
parametrise the distance between the con-
tact point and the centre of the axle as a
function of θ by r(θ). We shall demonstrate
that r(θ) = C exp(tan(α)θ).

Consider increasing θ by a very small dθ.
The triangle ABA′ can be approximated to a right-angle triangle, where
|OB| = |OA|. We have:

|A′B| = dr = dr/dθ dθ and |AB| = r(θ) dθ

So,

tan(α) =
1
r

dr
dθ

.

Since α is fixed, solving this differential equation gives a general solution of
C exp(tan(α)θ). This shape is known as a logarithmic spiral and is now used
by most major manufacturers.
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(a) Parallel crack (b) Flaring crack

Figure 3: Schematic diagram of a cam.

Restrictions on cam angle

The cam angle is constant regardless of θ. So, we may choose α such that the
frictional force Ff can hold a climber during a fall. Let F be the force loading
on the axle of each cam. We shall assume that the load spreads evenly across
the four cams and that F is parallel to the gravitational force. Let Ff be the
frictional force exerted by the wall and N be the normal force. By the torque
balance with the centre on O, we have

Ff r(θ) cos(α) = Nr(θ) sin(α)

And thus, Ff = N tan(α). If µ is the coefficient of friction between the rock
and the cam, then to avoid sliding, Ff ≤ µN. This implies that the cam angle
must be chosen such that tan(α) ≤ µ. Generally, the cam angle is chosen to
be around 13.75◦. Now, the reaction force Fr from the wall is the sum of Ff
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and N. Furthermore, by balancing the vertical forces, F = Ff = Fr sin(α),
so Fr = F/ sin(α). Notice that the cam angle is small, meaning that N/Ff is
quite large. As a result, a little force on the camming device can generate a
strong reaction force from the wall.

Flaring cracks

Suppose that the crack is not quite parallel, but flares out a little at the bottom
as in Figure ??. Let β be the angle between the wall and the vertical direction.
By balancing torque, Ff = N tan(α). The difference between the two scenarios
is in the reaction forces. First, balancing forces on the whole cam gives:

F + N sin(β) = Ff cos(β). (1)

After substituting Ff = Fr sin(α) and N = Fr cos(α) in (??), we get:

F = Fr cos(β) sin(α)− Fr cos(α) sin(β) = Fr sin(α− β).

Therefore, as the angle β approaches α, the reaction force Fr approaches infin-
ity. In practice, this means that either the camming device or the rock breaks,
which is not great news for the falling climber either way. So, is there an
alternative design that allows one to place the cam in a highly-flaring crack?

Totem cams

Recently, a manufacturer produced a new design which they claim to be
more effective against highly flared cracks. Instead of having a central stem
taking the force of each fall, they have a wire connected to each cam to take
the load as in Figure ??. A wire follows the contour of a cam before exiting
downwards. By designing the shape of the back, they can change the reaction
force from the wall.

There are two active areas in each cam. Their shapes are logarithmic spirals,
where one can be obtained from the other by a 180◦ rotation around the
centre of the axle and then applying an appropriate scaling. Let each active
region be parametrised by

B(θB) = b · exp(tan(α)θB) and C(θC) = c · exp(tan(α)θC). (2)
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We shall assume the following:

1. The load is perfectly aligned and distributed evenly to all four cams.
2. The force loaded on each cam is in a downward direction.
3. The angle θB is equal to the angle θC.

First, by balancing force on the whole cam, Ff = F. By then balancing torque
centred on the axle, we get:

Ff cos(α)B(θB) + F cos(α)C(θC) = N sin(α)B(θB)

Ff cos(α)(B(θB) + C(θB)) = N sin(α)B(θB)

Ff cos(α) · (b + c) ·(((((((exp(tan(α)θB) = N sin(α) · b ·(((((((exp(tan(α)θB)

Ff = N
b tan(α)

b + c
= N

tan(α)
1 + c/b

.

The second step is just a substitution with equation (??). Again, to avoid
sliding, Ff ≤ µN, where µ is the friction coefficient. This requires that
tan(α)/(1 + c/b) ≤ µ. For simplicity, we may interpret this as a new cam
angle. We shall define an equivalent cam angle by:

tan(αe) =
tan(α)
1 + c/b

.

Note that since tan is an increasing function between 0 and π/2, αe < α.
Now, the reaction force is just Fr = F/ sin(αe).

Totem cams on flaring cracks

Let β be defined as before. Note that angle θB is not the same as θC anymore.
In fact, θB = θC− β (exercise). The force balance on the cam gives Ff cos(β) =
F + N sin(β). By the torque balance,

Ff cos(α)B(θB) + F cos(α)C(θC) = N sin(α)B(θB)

Ff B(θB) + (Ff cos(β)− N sin(β))C(θC) = N tan(α)B(θB)

Ff (B(θB) + cos(β)C(θC)) = N(tan(α)B(θB) + sin(β)C(θC))

Again, to avoid sliding,

tan(α)B(θB) + sin(β)C(θC)

B(θB) + cos(β)C(θC)
≤ µ.
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(a) Parallel crack (b) Flaring crack

Figure 4: Schematic diagram of a totem cam.

Then substituting equation (??) to get:

tan(α)betan(α)θC−β + sin(β)cetan(α)θC

betan(α)(θC−β) + cos(β)cetan(α)θC
=

tan(α)be− tan(α)β + sin(β)c
be− tan(α)β + cos(β)c

(3)

At β = 0 (parallel wall), equation (??) gives tan(α)/(1 + c/b) ≤ µ. At β = α,
equation (??) gives:

tan(α)be− tan(α)α + sin(α)c
be− tan(α)α + cos(α)c

= tan(α)
be− tan(α)α + cos(α)c
be− tan(α)α + cos(α)c

= tan(α) ≤ µ

A careful differentiation will yield the fact that the expression (??) is an in-
creasing function between β = 0 and β = α. So, the minimum required
friction coefficient to avoid sliding increases from tan(α)/(1 + c/b) to tan(α)
as β increases. The reaction force is:

Fr =
F

sin(αe − β)
where αe = arctan

(
tan(α)be− tan(α)β + sin(β)c

be− tan(α)β + cos(β)c

)
.
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Final remarks

While the totem design is great for lowering the cam angle at low β, its cam
angle increases to that of the traditional design as flaring angle increases. The
manufacturer chose α = 20.35◦, and the ratio c/b so that in a parallel crack,
12.52◦ < αe < 13.13◦. This design allows for a theoretical placement in a
40.7◦ flared crack. Note that in this crack, the cam angle is 20.35◦, which is
considered to be at the maximal end (Black Diamond Camalot’s cam angle is
about 14.7◦).

The benefit of this design is clear when we compare it against a traditional
camming device with a cam angle of 20.35◦. At a lower flared angle, Totem
cams require a lower friction coefficient than those of other competitors.
However, if one compares it with, say, Black Diamond’s Camalot C4, which
has a cam angle of 14.7◦, we note that it sacrifices its required minimum fric-
tion coefficient at higher flaring angles for a larger maximum flaring angle. In
practice, one should avoid placing cams in a flaring angle for obvious reasons
anyway. Thus, it depends on what one values more in a camming device—
a higher maximum flaring angle or a higher minimum friction coefficient
requirement.

Final notes on the calculation:

1. We assume that the force loaded on each cam is downward. This angle
depends on θB.

2. The angle θB is unlikely to equal θC. The means that the ratio
C(θC)/B(θB) will vary. The manufacturer suggests that it can vary be-
tween 0.67 (fully closed) and 0.59 (fully open).

3. The load never spreads evenly to each cam. The force F is the force on
that cam. It is not the same as T in their calculation.

— Tharatorn Supasiti

‘Students nowadays are so clueless’, a mathematics professor
complained to a colleague. ‘Yesterday, a student came during
my office hours and wanted to know if General Calculus was a
Roman war hero. . . ’
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Statistical Quirks: How to Avoid Becoming
Simpson’s Donkey

There are three kinds of lies: lies, damned lies and statistics.
— Benjamin Disraeli

The former Prime Minister of New Zealand, Robert Muldoon, once famously
quipped that the exodus of New Zealanders moving to Australia in search
of work didn’t concern him, since such immigration ‘raises the average IQ in
both countries.’

This joke is funny, but it is also remarkably subtle;1 to arrive at the im-
plied punchline that ‘New Zealanders are smarter than Australians,’ the non-
statistician needs an unconscious appreciation of a statistical quirk known as
the Will Rogers phenomenon as well as an intuitive sense of the conditions
that are necessary for the phenomenon to occur.

So what is the Will Rogers phenomenon? Put simply, it is the effect by which
migration of data between data sets can, in certain circumstances, increase
the average of the data in both sets. Consider the following:

A = {1, 2, 3, 4, 5}

B = {3, 4, 5, 6, 7}

If the data point 4 migrates from set B to set A, then the average of set A will
increase from 3 to 3.166 while the average of set B will also increase from 5
to 5.25. Hence, the migration has increased the average in both sets.

This phenomenon will occur whenever the migrating data point lies below
the average of set B (so that its removal raises the average of set B) but above
the average of set A (so that its inclusion raises the average of set A). So a
necessary condition for the phenomenon to occur is that the average of set B
(the intelligence of New Zealanders) is greater than the average of set A (the
intelligence of Australians). Hence the implied punchline of the joke.

The fact that so many people find this joke funny speaks volumes about
humans’ innate ability to correctly process statistical information, even when
on first glance such a conclusion may seem counterintuitive.

1Especially for a politician.
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Yet the Will Rogers phenomenon is but one of many statistical quirks that
appear with regularity in the presentation of data, some of which can be
highly misleading if the quirk is misunderstood.2 This article will look at
one such notable quirk—the Simpson reversal—whose appearances in data
continues to confound laymen and statisticians alike.3

The Simpson reversal

Consider the following scenario.4 You are the Vice-Chancellor of the Univer-
sity of Melbourne, and are being confronted by an angry group of women’s
rights campaigners who have just discovered that the university’s acceptance
rate for prospective students is 55% for males but only 45% for females. With
the threat of a gender discrimination lawsuit ringing in your ears, you phone
up the various faculties of the university to find out who is responsible for
such a discrepency.

First, the Law Faculty, whose Dean assures you that within their Faculty the
acceptance rate for females is actually higher (55%) than that for males (45%).
Next, the Science Faculty, whose Dean makes the same assertion (33.2% to
28.6%). Finally, the Arts Faculty, whose Dean, in turn, claims that their Fac-
ulty is accepting comparatively more females than males (66.7% to 61.9%).

So what’s going on? Is it possible that each of the faculties is accepting,
as a percentage of applicants, more females than males, but that the overall
acceptance rate favours males?

Yes, it is. Consider the following table, showing the percentage acceptance
rates alongside hypothetical raw acceptance/total applications data:

2Another common quirk involves the fact that the addition of data points to a set can produce
contrasting effects on the median and the mean of the data set: for instance, it can simultaneously
raise the mean of the data while lowering the median. Interestingly, the misleading effect of this
quirk is also often demonstrated by another joke: ’Bill Gates walks into a bar. The average
income of the people in the bar goes up 100,000%.’

3The Simpson reversal is often called ‘Simpson’s paradox’ but, for reasons that will hopefully
become apparent, this name is less appropriate.

4Based loosely on a real life situation that occured at the University of California, Berkeley:
see, e.g. the references at http://en.wikipedia.org/wiki/Simpson%27s_paradox.
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Males Females
Law 18/40 = 45% 22/40 = 55%
Science 10/35 = 28.6% 46/143 = 32.2%
Arts 120/194 = 61.9% 44/66 = 66.7%
Overall 148/269 = 55% 112/249 = 45%

Each faculty is indeed favouring females over males, yet when the data is
aggregated this trend is reversed. This is an example of a ’Simpson reversal’:
the trend in aggregated data can actually be the reverse of trends seen when
the data is split into two or more subgroups.

At first glance, a Simpson reversal may seem like an unusual quirk, but in
fact it can and does appear in many different real-world situations. Consider
the following:

1. It is possible for Mitchell Johnson to finish the first innings of a test
match with a better bowling average than Brett Lee, and then to repeat
this feat in the second innings of the same match, but to still end up
finishing the match with a lower bowling average than Brett Lee.5

2. It is possible for the overall unemployment rate to be lower today than
in 1980, but for the unemployment rate among those with university
education, those without university education but with a high school
certificate, and those without high school certificates, to be higher today
than in 1980.6

3. It is possible for Jetstar to have a better flight-delay record than Tiger in
every airport in which they operate together, but for the aggregate data
to show that, overall, Tiger has the better flight-delay record.

This Simpson reversal is troubling, even for professional statisticians, because
it demonstrates just how difficult it is to summarise statistical data in a way
that is not potentially misleading.

5The interested reader might like to search for an occurence of such a phenomenon, and
let Paradox know about it. In the baseball context, a famous example comes from the batting
averages of Derek Jeter and David Justice: in both 1995 and 1996, Justice had the better average,
but when these years are considered together, Jeter had the better average.

6This is precisely the case at present in the United States, where much attention has been
placed on whether the ongoing recession today is worse than the the recession of 1980: Tuna C.
When Combined Data Reveals the Flaw of Averages. Wall Street Journal; [updated 2009 Dec 2;
cited 2011 Jul 21]. Available from: http://online.wsj.com/article/SB125970744553071829.html.
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Take the University of Melbourne scenario, and imagine that a sex discrimi-
nation case was brought against the university and eventually proceeded to
trial. Which data set should the judge take into account when determining
the case: the data split by faculty, the aggregated data, or a combination?
What if the judge deferred their opinion to a statistician, and wanted a one-
word answer to the question: ‘Does the data tend to suggest that the univer-
sity has a selection bias in favour of males?’

Similarly:

1. In the cricket scenario, who was the better bowler over the course of the
test match: Mitchell Johnson or Brett Lee?

2. In the unemployment scenario, is it disingenuous for politicians to claim
that the unemployment rate is lower today than in 1980, despite the fact
that across all education levels in society the chances of being out of
work are actually higher now than in 1980?

3. In the airline scenario, which is the better airline for travellers wishing
to avoid delays: Jetstar or Tiger?

Such questions go right to the heart of statistical inference, and any uncer-
tainty about their resolution cannot be tolerated. That is why an appreciation
of Simpson reversals are so critical to understanding data presented in terms
of proportions or percentages.

The ’paradox’ explained

If drawing information based on a Simpson reversal can be troubling, the
same is not true of the maths that underpins it, for on a superficial level the
reversal is extremely easy to understand. The crux lies in the fact that when
proportions are aggregated they are not simply summed, but instead are
weighted according to the quantity of data points underlying the proportion.

The fact that the Deans reported only the percentage acceptance figures
masked the true story. In fact, the raw acceptance/total applications data
suggested that the two sexes did not apply to the faculties in a uniform man-
ner. For instance, a significantly higher number of females applied to the
Science Faculty than did their male counterparts. The Science Faculty also
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happened to be the faculty with the highest overall rejection rate. So females
displayed a preference for a highly competitive faculty, and hence their over-
all rejection rate was comparatively raised.7

Similarly:

1. Brett Lee must have taken more wickets than Mitchell Johnson in the
innings where the bowling figures were better for both bowlers, thus
reducing his overall bowling average.

2. Compared to 1980, more people now have an university education, and
the unemployment rate is lowest among this group. Thus, despite the
unemployment rate increasing in every category, the increased weight
of the ’university education’ sector produces an aggregate downward
trend.

3. Tiger Airlines must be flying more planes out of airports where less
delays occur. This pushes its overall flight-delay figures downwards.

This explanation of the Simpson revesal makes immediate sense when trans-
lated into a context where discrepancies in weighting occur naturally. Con-
sider Australia’s tax system, which charges a higher tax rate for those with
higher incomes. Given the effects of nautral inflation, it is intuitive that a
government could, over a 10-year period, decrease the tax rate in each of the
income ranges while reaping a higher overall tax rate from the population.8

The key is the change in relative weightings: as incomes rise, more people are
pushed into higher income regions. While this might colloquially be called
’bracket creep’, it can also be understood as a manifestation of a Simpson
reversal.

To better understand the reversal, it is useful to write the statements of the
reversal in algebraic terms (for simplicity, we’ll assume that in our university
example there were only two faculties). The statements are:

a
b
<

A
B

c
d
<

C
D

7In this context, a Simpson reversal could have occurred either if females showed a slight
preference for a faculty that had significantly higher rates of rejection, or had a strong preference
for a faculty that had a slightly higher rate of rejection.

8With the exception, of course, of the rate in the tax-free income range, which can only be
kept constant.
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and
a + c
b + d

>
A + C
B + D

where a and b are the acceptance/total applications data for males for one
faculty, c and d for another; and the upper case letters the same data for
females.

To see how such an arrangement is possible, we can visualise these propor-
tions as vectors (a, b), (A, B), (c, d) and (C, D) with (a, b) being steeper than
(A, B), (c, d) being steeper than (C, D), but (A + B, C + D) = (A, B) + (C, D)
being steeper than (a + b, c + d) = (a, b) + (c, d):

(a,b)

(A,B)

(a,b) + (c,d)
= (a+c,b+d)

(A,B) + (C,D)
= (A+C,B+D)

2 4 6 8 10

5

10

15

Figure 1: A Simpson reversal depicted in vector form.

Interpreting the data as probabilities can also assist in explaining the reversal.
If we let the two faculties be F1 and F2, A indicate acceptance, and M and
M′ indicate male and female, then the reversal can be stated as:

P(A|M ∩ F1) < P(A|M′ ∩ F1), 9

P(A|M ∩ F2) < P(A|M′ ∩ F2), 10

P(A|M) > P(A|M′).11

9Interpreted as the probability of acceptance into Faculty 1 given that you are a male is less
than the probability of acceptance into Faculty 1 given that you are a female.

10Likewise for Faculty 2.
11Interpreted as the probability of acceptance into both faculties given that you are a male is

greater than the probability of acceptance into both faculties given that you are a female.
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Then, using the total law of probability, we can expand:

P(A|M) = P(A|M ∩ F1)P(M|F1) + P(A|M ∩ F2)P(M|F2),

P(A|M′) = P(A|M′ ∩ F1)P(M′|F1) + P(A|M′ ∩ F2)P(M′|F2).

From this, it can readily be seen that the Simpson reversal depends on the
relative weighting of P(M|F1), P(M|F2), P(M′|F1) and P(M′|F2), which
precisely encodes the preference that males and females show for each fac-
ulty.

Decision making: how to avoid becoming Simpson’s donkey

So far, we have seen that a Simpson reversal occurs in many real-world situ-
ations, and that, although counterintuitive, there is no mathematical reason
why such a reversal should not occur. So is that the end of the story?

Far from it.

Consider a new scenario where a Simpson reversal can occur: data col-
lected about a new drug suggests that, when compared with an old drug,
it demonstrates increased effectiveness among the female population, simi-
larly demonstrates increased effectiveness among the male population, but
demonstrates reduced effectiveness among the population at large.

Imagine that you were a doctor confronted with this data. Should you start
using the new drug? Could the correct answer possibly be: ‘Only when you
know the gender of the patient?’

Intuitively, it seems that the critical consideration is the aggregated data, and
hence you should conclude that the new drug is less effective. But where is
this intuition coming from? And is it accurate?

Consider, now, the scenario from the other side. Imagine you are a drug com-
pany executive faced with aggregate data suggesting that your new drug is
worse than its predecessor. Being smart and unscrupulous, you realise that a
data set can be broken down into an arbitrary number of subgroups (patients
with blue eyes versus patients with non-blue eyes; patients whose names
begin with A–K versus patients whose names begin with L–Z etc., some of
which you would expect to demonstrate a Simpson reversal. Say, after much
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searching, you find the breakdown you need: the new drug is more effec-
tive among patients younger than 20, and also more effective among patients
older than 20.

You present this information to the hospital. Clearly, the hospital would
be foolish to accept your findings. This example demonstrates just how the
presentation of data can have a strong potential to mislead.

Imagine now that the disease is lung cancer, and the data shows that the
drug is more effective in patients who complain of headaches, and also more
effective in patients who do not complain of headaches, but less effective
overall. Should the conclusion be different this time? Are we ever justified in
considering separate data sets rather than the aggregate data?

The key to this question lies in the causal links between the factors at play.
Causation is a controversial topic among statisicians, chiefly due to the impos-
sibility of empirically verifying causal links. Instead, statisticians substitute
the notion of correlation, the empirical observation that two factors tend to
appear together. Yet correlation and causation must not be confused.

Two events may be heavily correlated, yet there may be no direct causal link
between them. Instead, they might both be caused by a third event. Take,
for instance, the correlation between ice cream consumption and drowning.
Both tend to occur in the summer when more people visit the beach or pool,
but they are not in themselves causally connected. As such, two events might
occur together by mere coincidence, or the causal relationship might be more
complicated.

Back to the drugs. Suppose the data is split into two groups, G and G′. Fur-
ther, let T indicate that a patient is treated effectively, and let N and N′ indi-
cate the act of taking the new or old drug. In causal calculus this is normally
denoted do(N) and do(N’) respectively. Finally, suppose with confidence that
the choice of drug has no causal connection with G. Thus:

P(G|do(N)) = P(G|do(N′)) = P(G)

P(G′|do(N)) = P(G′|do(N′)) = P(G′)

Assume this applies to gender as well as eye colour, name, and age.

Then suppose that the aggregate data demonstrates that the new drug is more
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effective than the old drug. Hence:

P(T|do(N)) > P(T|do(N′))

⇒ P(T|do(N) ∩ G)P(G|do(N)) + P(T|do(N) ∩ G′)P(G′|do(N))

> P(T|do(N′) ∩ G)P(G|do(N′)) + P(T|do(N′) ∩ G′)P(G′|do(N′)

⇒ P(T|do(N) ∩ G)P(G) + P(T|do(N) ∩ G′)P(G′)
> P(T|do(N′) ∩ G)P(G) + P(T|do(N′) ∩ G′)P(G′)

⇒ P(G)
(
P(T|do(N) ∩ G)−P(T|do(N′) ∩ G)

)
> P(G′)

(
P(T|do(N′) ∩ G′)−P(T|do(N) ∩ G′)

)
.

which contradicts

P(T|do(N) ∩ G) < P(T|do(N′) ∩ G)

P(T|do(N) ∩ G′) < P(T|do(N′) ∩ G′).

Hence, where G is not causally connected with do(N), a Simpson reversal is
not possible. Therefore, in a situation where G is believed not to be causally
connected with do(N), but where a Simpson reversal is nevertheless present,
the data must either be rigged or the assumption about the causal connection
between G and N must be false.

In fact, according to cognitive scientist Judea Pearl, a Simpson reversal is only
possible in three causal situations (See Figure 2):12

Only if the causal diagram is the one on the left should the separate data be
considered instead of the aggregate data. Otherwise, we are conditioning on
a factor that resides on the same casual pathway we seek to evaluate.

Returning to the drug example, suppose that effectiveness data demonstrated
a Simpson’s reversal in either the gender, age, or name data. We can assume,
with confidence, that the medication does not causally influence the gender,
age or name of a patient. Thus, the option presented by diagram (b) is elimi-
nated.

Diagram (c) requires the presence of a hidden factor Y that influences both re-
covery and the gender, age, or name of a patient. This is plausible in the case
of gender or perhaps even name (e.g. the factor could be related to ethnicity)

12Judea Pearl, ’Simpson’s Paradox: An Anatomy’, Chapter 6, Causality, 2009.
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Diagram (a) Diagram (b) Diagram (c)

Figure 2: The three causal relationships that can lead to a Simpson reversal.
In diagram (a), the group influences the type of drug as well as the efficiency
of the treatment. In diagram (b), the type of drug influences the group, and
the group influences the treatment. In diagram (c), hidden factors X and Y
influence all three of the factors.

but this requires further investigation. In the absence of such a factor, the
only explanation is diagram (a), which suggests that the factor G influenced
the choice of medication. And if this is the case then we should consider the
data separately rather than in aggregate.

In contrast, it is logical that headaches might be causally connected to the
taking of the new medication. Thus diagram (b) is very plausible, and so we
should be more inclined to consult the aggregated data.

Let us apply this analysis to our real-world situations:

1. The innings of a cricket match is not a factor that can be influenced by
underlying causes, so diagram (a) applies—the separated data is more
appropriate.

2. The education level of society has in all likelihood been caused by fac-
tors related to the advance in years from 1980 to 2011, and so diagram
(b) applies—the aggregated data is more appropriate.

3. The airline is not a factor that can be influenced by underlying causes,
so diagram (a) applies—the separated data is more appropriate.

Finally, we are in a position to resolve the question that we posed above: ‘Was
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the University of Melbourne demonstrating a gender bias?’

In fact, the answer depends. If females are indeed choosing the ‘ultra-
competitive’ Science Faculty more often than males, then the choice of faculty
has a causal connection to the gender of the applicant and we are in a diagram
(a) situation. Thus, using the separated data is more appropriate. Conclusion:
no gender bias.

On the other hand, if there is a hidden factor, X, that has a causal connection
to both the faculty and the gender of the applicant; and also a hidden factor,
Y, that has a causal connection to both the faculty and the success of the
applicant, then we are in a diagram (c) situation (However, it is not clear
what such factors X and Y could be). As a result, using the aggregated data
is more appropriate. Conclusion: gender bias.

In sum, Simpson’s reversal is an intriguing statistical quirk, a good under-
standing of which is critical in order to avoid misinterpreting of some forms
of data presentation. Interestingly, although the reversal can be easily ex-
plained mathematically, it is only through an analysis in terms of causal
chains that the power of the reversal to deceive can be truly appreciated.

Moreover, the fact that the reversal is often referred to as a ’paradox’ is en-
lightening in itself, for it suggests that humans are intuitively suspicious of
the reversal in certain situations. In fact, as we have seen, where the group
factor is not causally related to the other factors, the reversal is impossible. Our
natural impulse to reject the Simpson reversal might then just be a product
of humans’ deeply causal rather than purely statistical reasoning.13

— Stephen Muirhead

While the individual man is an insoluble puzzle, in the aggre-
gate he becomes a mathematical certainty. You can, for exam-
ple, never foretell what any one man will be up to, but you can
say with precision what an average number will be up to. In-
dividuals vary, but percentages remain constant. So says the
statistician.
— Arthur Conan Doyle

13For more on the link between Simpson reversals and human modes of reasoning, it is worth
tracking down Judea Pearl’s work Causality.


