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Words from the Editor

Welcome to the second edition of Paradox, the magazine produced by the
maths and stats students society (MUMS). This edition is the first of the post-
James Wan era, Paradox’s longest-serving editor ever having finally retired
his orange highlighers and tEx manual at the end of last semester.

In 1996 Paradox consisted of two editions, both 10 pages long. In 2001 Para
dox had progressed to three editions averaging 14 pages. Since 2006, the year
James took the helm, Paradox has been produced three times a year, and is
on average over 30 pages long. This is as much a mark of his professional-
ism, as it is evidence of an unmatched ability to unearth (terrible) maths jokes,
anecdotes and problems.

If imitation is the sincerest form of flattery, we begin this edition with a tribute;
a selection of the best (or worst) of Paradox jokes from the last three years.

Also in this edition you will discover why hanging chains can make you a
famous architect, why you should never work hard again, and why the value
of ten dollars is not obvious. You might also realise how much you value ten
dollars by solving one of Paradox’s cash prize problems.

Paradox is the magazine of the maths students society, and hence of all maths
students. It is only as good as the people that contribute to it. If you hear a
good joke, a mind-bending puzzle or even if you simply overhear your maths
lecturer saying something witty or stupid, Paradox wants to hear from you
(either drop into the MUMS room, or use the Paradox email on the inside
front cover). Article submissions, in any form, are gladly accepted.

And, for goodness sake, go see Terry Tao’s lecture!! See back cover for details.

— Stephen Muirhead

An optical illusion:  These two figures are perfect circles.
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Words from the President

Apparently it is the task of the President of MUMS to write the President’s
words in Paradox. Who would have figured? At least for this edition, I do
have some momentous news. After long, hard, difficult research in the dark
depths of the Maths and Stats library, it has been discovered by James Wan,
the esteemed former editor of Paradox, that MUMS was formed in 1929. This
means that MUMS is officially 80 years old this year! Hip, Hip, Hooray! We
will be accepting any cakes that are offered to us in celebration. Unfortunately,
due to the serious global economic crisis (best excuse ever), MUMS will not be
holding a epic birthday party of win, and you can blame this on all the finance
graduates (not the statistics students, they’re cool).

In other less momentous news, MUMS has revamped our website, and made it
far less orange/eyehurty and now its a much more peaceful blue. I encourage
you all to go check it out, keep up to date with MUMS events, and find all the
broken links for us. Also, we’ve rearranged the furniture in the MUMS room.
Feel free to come in and attempt to prove to us that it is still isomorphic to the
original formation. Glittering prizes await the first to do so!

With the semester just having started, MUMS will be soon rolling out all our
big ticket events, most notably the Math Olympics, the epic test of endurance,
skill, agility and mathematical cunning. Don’t forget to partake in our (mostly)
weekly seminars about what I consider to be the much more fun and interest-
ing side of mathematics. Additionally, don’t be afraid to poke your heads into
the MUMS room. We won't bite! In fact, if you ever need any help with your
maths, there’s a good chance you can find it in the MUMS room. And in case
you're worried about not knowing anyone in the MUMS room, for easy refer-
ence, the sleeping immobile figure on the couch is yours truly. Oh, and keep
on the lookout for the next edition of Paradox, which should be coming out
later in the semester. Gotta build up those libraries of paradoxen!

— Han Liang Gan

Cover Picture: Spanish architech Antoni Gaudi is famous for
his heavy use of hanging chains (catenary curves) in his work.
This model was created using a series of inter-connected
hanging chains. A mirror situated beneath the model inverts
the viewpoint, revealing the intended design of the building.
For more details see the article Catenary Curves.
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A Tribute to James Wan

Q: What do you call a young eigensheep? A: A lamb, duh!
Q: Why didn’t Newton discover Group Theory? A: Because he wasn’t Abel.

“What’s your favourite thing about mathematics?” “Knot Theory!” “Yeah, me
neither!”

Q: How can you tell when a mathematician is extroverted? A: When he is
talking to you he stares at your shoes instead of his.

Did you hear about the statistician that was thrown in jail? He now has zero
degrees of freedom.

Lecturer: Today we’ll be studying Abelian groups. Student: What?! I hardly
know two!

Zenophobia is the irrational fear of convergent sequences.
Mathematican puns are the first sine of madness.
00

Three statisticians go hunting. When they see a rabbit, the first one shoots and
misses on the left. The second one shoots and misses on the right. The third
one shouts: “We hit it!”

An engineer thinks his equations are an approximation of reality, a physicist
thinks reality is an approximation of his equations. A mathematician doesn’t
care!

When the logician’s son refused to eat his vegetables for dinner, his father
threatened him: “If you don’t eat your vegetables, you won't get any ice-
cream.” Frightened by this prospect, the son quickly finishes his vegetables.
The father, bemused that his idle threat had worked, sends his son to bed
without any ice-cream.

Biologist think they are Biochemists. Biochemists think they are Physical Chemists.
Physical Chemists think they are Physicists. Physicists think they are God.
And God thinks he is a Mathematician.

Philosophy is a game with clear objectives and no rules. Mathematics is a
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game with clear rules but no objectives.
00
For his epitaph, Erdos suggested: “I've finally stopped getting dumber.”

George Bernard Shaw: “Statistics show that, of those that contract the habit of
eating, very few survive.”

John von Neumann: “In mathematics you don’t understand things, you just
get used to them.”

Aaron Levenstein: “Statistics are like a bikini. What they reveal is suggestive,
but what they conceal is vital.”

Quotes from Maths Lecturers

In response to the article from the last edition, several new quotes have been
sent in by readers. Here is a selection. Please send in any more that you hear!

Barry Hughes

* “You don’t have to be the Brain of Brisbane to solve this PDE.”
e “It will look at you and scream: ‘Eigenfunction me!” ”

* “The probability of getting something right decreases exponentially with
its length.”

Paul Norbury

* “One day, lecturing Algebra, I was supposed to be proving that there
existed infinately many primes. That was too easy, so instead I proved
that there were finitely many. Sometimes proving false things can be
useful.”

Craig Westerland

* In response to a request for a joke. “A physicist and an engineer are on
a deserted island. Seeing a hot air balloon flying overheard the engineer
yells out: “Where are we!?’. To which the response comes from above:
“You are below me!” The physicist immediately says: ‘Ahh, a mathe-
matician.” When the engineer looks incredulous, asking how he knew,
the physicist responds: “Well, what he said was at once entirely correct,
and entirely useless.” ”
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Egyptian Fractions and Harmonic Series

“God created the integers; all else is the work of Man.” At least, according to
Leopold Kronecker, a 19th century German mathematician who believed that
irrational numbers didn’t exist. This sounds a little silly, but let’s think about
it for a moment. The information capacity of the observable universe is finite,
so two quantities which differ in decimal expansion only at digits beyond this
information capacity can never be distinguished. As far as the real world is
concerned, every supposedly irrational number is exactly equal to a rational
one, so why should we care about numbers that aren’t rational?!

Our lifelong romance with the rationals begins at an early age, and like all
relationships, has its ups and downs. First, we're taught that % is wrong,
because it is vulgar. Later, we're taught that 23 is wrong, because it can be
confused with multiplication. Finally, we’re taught that 2.3 is wrong, because
it suggests an error of £0.05.

So what is right? We could resort to hideous compromises like 23 x 75, 2 + 35
or 2.3000.... We could invent weird and wacky alternatives like 2.2999... or
J,” 23¢7197dz. Or, to finally get to the topic of this article, we could use the
long-winded but strangely elegant 1 + 3 + 3 + 1 + ¢ + 15.

This is called an Egyptian fraction, characterised by being a sum of distinct unit
fractions. The ancient Egyptians indeed wrote their fractions like this, but they
also allowed integers, so they would’ve just written 2 + 7 + ;.

Of course, to be useful as a notational system for rationals, we first need to
know whether we can write every (positive) rational this way. The answer is

. D . -2 . o . . g
yes, and in fact, the proof is quite easy:* Given a positive rational number <1,

1
z—1"

subtract the largest unit fraction possible, that is, subtract 1 where X < 7 <

Then %—% = =7, buty > x(z—1) by our choice of z, s0 xz—y < xz—x(2—1)
x. Thus, the numerator is strictly smaller, so we must eventually end up with a
numerator of 0. That means the unit fractions we subtracted add up to exactly the

original number, and it’s pretty clear that they re distinct.

This proves it for positive rationals less than 1, so now take any positive rational q.
The harmonic series 1 + 5 + 5 + - - - diverges, so we can pick the largest partial sum

!We have omitted complex numbers from this discussion. In fact, they’re much more useful
than irrationals, the reason being they can’t just be approximated by rationals.

ZParagraphs in italics are proofs; the busy, impatient and /or downright lazy reader should feel
free to skip them.
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s = 1+3+ -+ < whichis less than or equal to q. Then, s is a sum of unit fractions,

and q — s < ——, so we can apply the above arqument to q — s. The unit fractions we

n+1’
obtain all have denominator at least n + 2, so they can’t be repeats of the ones we’ve

already picked for s, and hence we have a bona fide Eqyptian fraction.

Applying this method to our favourite number 2.3 gives 1 +1 + 3 + 1+ 1 + &.
Wait, 60?7 What gives? Our original expansion only needed denominators
up to 10, so how come we need 60 now? Well, we proved that an Egyptian
fraction representation exists, but we didn’t say anything about our algorithm
being a good one. In fact, much nastier examples exist, but at least we know
we can always find one, however bad it might happen to be.?

For those who find this hard to believe, here’s a nice intuitive analogy: If you
have one of each Australian coin, what amounts of change can you make?
Anything less than $4 that doesn’t contain the digits 4 or 9 — and the reason
90c doesn’t work is because the 20c and 50c coins are too far apart; if we had
a 35c coin in addition to the existing ones, we’d be fine. If we think of the unit
fractions as an infinite pocketful of distinct coins, with no big gaps in their
values, it makes sense that we can make any amount of change we want.

What’s next? Well, we can make any rational number, so how about our un-
physical friends, the irrationals? Irrationals can’t be written as any finite sum
of any rationals, but they can certainly be written as an infinite sum of them,
for example, 7 = 2 + L 4+ 2= + ... But what if we want the summands
to be distinct unit fractions? Can every positive real number be written as a
generalised Egyptian fraction?

As it turns out, we can. The proof is a little harder than before, but not too
much so: For any positive real number r, let a, be the largest unit fraction less than
r, ag the largest unit fraction less than r — a; which is not ay, and so on, with a,, the
largest unit fraction less than r — a; — - - - — a,,—1 which has not already been picked.
Then the partial sums s,, = a1+ - - -+ a,, are monotone increasing and bounded above
by r, so if you remember your first year maths, this means they must converge!

What do they converge to? Well, the limit s can’t be any bigger than r, and if it
were any less, then r — s > 0, so we can pick an integer m > ——. In fact, we can
pick m so that L isn't equal to any a., since if every possible m were taken, then by
divergence of the harmonic series, the sum of the a,, would be infinite. There are only
finitely many unit fractions greater than -, but infinitely many distinct a,,, so some

ap < % But % <r—s<r—sp_1,and we picked a,, to be the largest unit fraction

Shttp:/ /en.wikipedia.org/wiki/Greedy_algorithm_for_Egyptian_fractions.
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less than r — s,,_1 which hasn’t already been picked, so this is a contradiction. Hence,
the limit must be r.

Pulling unit fractions out of your pocket to make up any positive real number
is a neat party trick, but incredibly, even cooler things happen once we add
some negative signs. We all know that T + 3 + 1 + 1 + - -+ = oo, but slightly
less well known is the fact that % — % + % — % + .-+ = log 2. It makes sense
that alternating signs cause it to converge—the partial sums jump back and
forth between 0 and 1, the jumps getting smaller until it finally settles down;
knowing that it converges, log 2 certainly seems like a plausible limit.

What isn’t quite as plausible is that the limit depends on the order in which
these signed unit fractions are added, without changing anything else. For
example, if instead of alternating odd and even denominators (with their pos-
itive and negative signs respectively), we take one odd for every two evens,
weget(1—5—1)+(5—-5—3)+=(G—-1)+(—5) + = 3log2 since
each term is now exactly half the corresponding term in the original arrange-
ment. We’ve all grown up thinking that order doesn’t matter when adding
things together, but when there are infinitely many things and some of them
are negative, it does!

How much does it matter? As it turns out, a lot. The Riemann series theorem?*

tells us that given any conditionally convergent series — that is, a convergent in-
finite sum which no longer converges when the signs on the summands are
removed — can be rearranged so as to converge to any real number, to diverge
to +00 or —oo, or to have no limit at all.

Going back to our initial example, we could really have some fun and write
2_3:(%4_...4_%)_%4.(%4....4.%)_(%+...+ﬁ)+...

— James Zhao

Puzzle 1

You have 14 balls and three paper cups. How can you place
the balls in the cups such that each cup contains an odd num-
ber of balls?

4Proof omitted: It’s not too hard to understand, but is a bit long for this article. It can easily be
found online if desired.
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Beautiful Concepts

Hex

The game of Hex is played on a hexagonal grid, such as the one below.

Two players take turns to place a token, the blue player trying to connect the
blue edges with blue tokens, and the red player trying to connect the red edges
with red tokens.

The game was first invented by Piet Hein in 1942, whilst contemplating the
four-colour theorem® — a fascinating result not proven until 1976.° In 1947,
Nash independently invented the game while at Princeton University. David
Gale, an older student, whom Nash told about the game, made the first board
and donated it to the common room, where games (particularly chess and
£0) had always been a popular means of recreation’ (much like the MUMS
room!). However, when Parker brothers marketed the game in 1952, under
the name Hex, Nash accused Gale of selling the game without his permission
— an allegation which he always denied.

Perhaps surprisingly, Nash proved that the game can never end in a draw,
that is, someone has to win! His proof used the Brouwer fixed point theorem.®

5http: / /www.swarthmore.edu/NatSci/math_stat/webspot/Campbell Garikai/Hex /history.html.
®http:/ /en.wikipedia.org/wiki/Four-colour_theorem.

7http:/ /maarup.net/thomas/hex.

8http:/ /en.wikipedia.org/wiki/Brouwer_fixed_point_theorem.



Paradox [ssue 2, 2009 Page 11

David Gale later proved Nash’s result to be equivalent to the theorem, and
generalised to n dimensions.’

Given Nash’s result, it is easy to argue that Hex is a first player win, regard-
less of the board size; it’s an exceedingly common game theoretical argument
known as ‘strategy stealing’. Firstly, observe that the two-game satisfies the
following conditions:

1. It is deterministic (there is no chance involved).
2. Both players know the exact position at all times.
3. There are two results: win/loss.

4. The game can’t go on forever.

From the above, it follows that either Player 1 has a winning strategy, or Player
2 has a winning strategy.

Suppose player 2 has a winning strategy. We will derive a contradiction by
showing that Player 1 has a winning strategy, namely the following:

¢ Start with any move.
e Player 2 moves.

— If you are able to, follow his winning strategy.

— If you already have all of the necessary tokens on the board to exe-
cute his winning strategy, then play any other move.

* Repeat.

With this strategy, Player 1 follows Player 2’s winning strategy, but always
has an extra token on the board. This contradicts our original assumption, so
we in fact deduce that Player 2 does not have a winning strategy (and hence
Player 1 does).

The good news is that the above argument doesn’t tell us how to win Hex.
In other words, Hex is still a fun game! Traditionally it’s played on an 11x11
board, although Nash himself advocated 14 as the optimal board size.

9The American Mathematical Monthly, Vol. 86, No. 10. (Dec., 1979), pp. 818-827.
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Nash Equilibria

Having found something to do with his buddies in his spare time, Nash then
went on to explore something really useful, namely the concept of Nash equi-
libria. Again, Nash wasn’t the inventor, but again, he made the greatest con-
tribution.

Long before Nash, the French economist, philosopher and mathematician An-
toine Augustin Cournot adopted the concept in his theory of oligopoly (1838).
In Cournot’s model, firms would set their quantity of output to maximise their
profits given the output of other firms. Similar logic would belie other oligopoly
theories, which were to follow, such as Bertrand’s, in which firms instead set
their prices given other firms’ prices.

Let’s look at a more concrete example; a classic one known as the Prisoner’s
Dilemma. In its classical form:!°

Two suspects are arrested by the police. The police have insufficient evidence for a
conviction, and, having separated both prisoners, visit each of them to offer the same
deal. If one testifies (defects from the other) for the prosecution against the other and
the other remains silent (cooperates with the other), the betrayer goes free and the silent
accomplice receives the full 10-year sentence. If both remain silent, both prisoners are
sentenced to only six months in jail for a minor charge. If each betrays the other,
each receives a five-year sentence. Each prisoner must choose to betray the other or to
remain silent. Each one is assured that the other would not know.

We can summarise the above using a payoff matrix:

Betray Abide
Betray | (—5,—5) (0,—10)
Abide | (—-10,0) | (-0.5,-0.5)

Step into the first player’s shoes.

Case 1: Player 2 betrays me

o [fI abide, then I cop 10 years in prison.

o If I betray him, then I only cop five years.

1Ohttp: / /en.wikipedia.org/wiki/Prisoner%?27s_dilemma.
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Case 2: Player 2 abides

o IfIabide, then I get 6 months.

e IfIbetray him, then I go free!

In both cases, Player 1 is better off betraying Player 2, so he will do so. We say
that betrayal strictly dominates abiding, for Player 1. The same argument holds
for Player 2. So both players will testify (with ‘best play’), and will reach
the outcome (—5,—5). If the players could cooperate, however, they could
both remain silent and achieve a more favourable outcome for both of them,
(—0.5,—0.5), and the police would get nothing! It's no wonder police choose
to question them separately!

When ten to the enemy’s one, surround him; When five times his strength, attack
him; If double his strength, divide him. . .

— Sun Tzu, The Art of War

In general, if every possible outcome for strategy A was no worse than it
would be with strategy B, and at least one possible outcome was better (for
action A), then we say that strategy A dominates strategy B. If every outcome
for strategy A is better than the corresponding strategy B one, then we say
A strictly dominates strategy B. Clearly any strictly dominant strategy is also
dominant. If every player follows a dominant strategy, then we’re certainly in
Nash equilibrium.

An example of a modern day prisoner’s dilemma is advertising. Suppose that
Qantas and Virgin have a duopoly over the Australian airline industry. Should
they advertise?

For simplicity, suppose they only have two options: to advertise, or to not
advertise at all. Advertising draws customers, but costs money as well. Let’s
make up semi-reasonable relative profit figures:

Advertise | Don’t Advertise
Advertise (4,4) (6,3)
Don’t Advertise (3,6) (5,5)
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With no advertising, they might take 50 per cent of the market each. When
Qantas advertises but Virgin doesn’t, Qantas may attract 70 per cent of the
market, but incur some cost, resulting in a (6,3) outcome. Here advertising
is the dominant strategy, so we’d expect the (4, 4) outcome. Again, however,
there is a better outcome: if the firms cooperate, they could both not advertise
and both achieve a better outcome.

In practice the firms could of course covertly agree to both not advertise (un-
like in the classical prisoner’s dilemma, where the players are isolated), so let’s
look at yet another economic example. Dominant strategies do not have to ex-
ist for a Nash equilibrium to exist; Nash’s concept is more general, as we shall
see.

Suppose two French people are driving towards one another on a street in
a wide, un-laned street in Park Orchards (which is in Victoria, Australia, for
those of you who don’t know). They both know you’re meant to drive on the
left here, but they both recognise their fellow countryman immediately, and
think that the other may well drive on the right. We get the following payoff
matrix:

Drive on the Left | Drive on the Right
Drive on the Left (100, 100) (0,0)
Drive on the Right (0,0) (100, 100)

For a given driver, neither strategy dominates the other. However, there are
two Nash equilibria: [L, L] and [R, R)].

Now we can define Nash equilibrium more generally. A set of strategies is a
Nash Equilibrium if no player can do better by changing their strategy, given
that other players’ strategies remain the same. The final phrase is akin to the
Latin phrase ceteris paribus — meaning “with other things the same” — which is
ubiquitous in economic theory.

In general there doesn’t have to be a Nash equilibrium at all, and — as we’ve
seen — there can be more than one! In many situations, however, there is pre-
cisely one. In this case, the Nash equilibrium strategy set will be adopted
under certain conditions:!!

1. The players all will do their utmost to maximize their expected payoff as

11http: / /en.wikipedia.org/wiki/Nash_equilibrium.
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described by the game.
2. The players are flawless in execution.
3. The players have sufficient intelligence to deduce the solution.

4. The players know the planned equilibrium strategy of all of the other
players.

5. The players believe that a deviation in their own strategy will not cause
deviations by any other players.

6. There is common knowledge that all players meet these conditions, in-
cluding this one. So, not only must each player know the other players
meet the conditions, but also they must know that they all know that
they meet them, and know that they know that they know that they
meet them, and so on.

— Sam Chow

Why you should never work hard again...

Picture the following situation: you are working for the day in a café, a tem-
porary job filling in for a friend who is ill. Given the provisional nature of the
work, the all important issue of pay has not yet been discussed.

At the start of the day, you see an excellent opportunity to slack-off while pre-
tending to clean tables out of sight. You reason that your boss has already pre-
determined your pay, hence there is nothing to be gained by working hard,
and you pass the rest of the day in the shadowy recesses of the café. Your
boss, meanwhile, has also reasoned that, since you will only find out your pay
at the end of the day, you will put the same effort into the work no matter
how generous he is, and so proceeds to strike off a zero from the standard
daily pay-rate. At the end of the day you part equally unsatisfied, the café
owner having received shoddy work, and you having received a pittance for
your efforts. Rational self-interest has conspired to undermine the optimum
outcome: hard work and generous pay.
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1 An iterated Prisoner’s Dilemma

Those who have studied some game theory, or have read the previous article
Beautiful Concepts, may have noticed that this is an application of the Prisoner’s
Dilemma. Here the workplace dynamic between employee and boss has been
simplified into the following payoff chart:

Pay Well Pay Badly
Work Well (Good,Good) (Very Bad, Very Good)
Work Badly | (Very Good, Very Bad) (Bad,Bad)

And in classic Prisoner Dilemma fashion, there is an outcome (Work Well, Pay
Well) which is far better for both parties than the Nash Equilibrium (Work
Badly, Pay Badly).

Yet if we believe what we read above, people in real-life work surprisingly
hard, and bosses in real-life pay surprisingly well. Is this merely a lack of
rational self-interest? Or is something wrong with our model? The answer is,
of course, that real jobs do not usually last for only one day. Indeed, if the café
owner wished you to return the next day, you may well wish to impress him
by working that little bit harder, in the hope of superior pay the following day.

Thus real work environments are better modelled by iterated Prisoner’s Dilem-
mas, with the assumptions that a new decision (Level of Pay, Quality of Work)
is made at the beginning of each time-scale (day, week, month, year etc), that
this decision is made independently by both parties, and that once made, the
decision must be stuck to. So, if you turn up for work in the café the follow-
ing day, the boss must decide at the start of the second day, what he will pay
you for that day’s work, and you must simultaneously and independently decide
whether or not to work hard on that day. If we imagine working at the café an
extended, indefinite, period of time, we might think of this as an infinite series
of daily decisions.

2 An infinite workplace

Armed with this model, we can attempt to explain why real-life workplaces
are not exclusively inhabited with slackers. Let’s call the decision pair (Boss,
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Employee) at time z,d, = (by,e.), and let’s define a b-strategy and an e-
strategy to be rule-books that uniquely determine decisions b, and e, respec-
tively, based on the decision history {d,...,d,—1}. An example of such a
b-strategy might be pay well for the first day, then pay well whenever the em-
ployee worked hard the day before, otherwise pay badly. These strategies can
clearly become very complex and convoluted. Whereas in the classic Pris-
oner’s Dilemma there is a single rational b-strategy and e-strategy, in the it-
erated analogy determining rational strategies becomes much more complex.
Indeed, depending on the strategy chosen by the opponent, a strategy that
may be successful in one instance may seriously backfire in another. For ex-
ample, an overly ‘nice’ strategy, where the boss usually pays well, is open to
exploitation by an unscrupulous employee. No strategy will produce an op-
timum outcome in all cases, therefore this is no truly rational strategy that
should always be followed. In other words there is no Nash Equilibrium!

Yet there are strategies that will at least produce a mutual outcome for both
parties better than the one predicted above. This is where both parties adopt
a punishment type strategy, and announce their intentions to the opponent.
Here, the boss would announce to the employee his b-strategy: I will pay
you well until the day you do not work hard, and for ever after I will pun-
ish you with low pay. Similarly the employee would announce to the boss
his e-strateqy: I will work hard until the day you do not pay me well, and for
ever after I will punish you with shoddy work. With such announced strate-
gies, rational self-interest does not allow either party to waiver from their own
strategy, for any attempt to backstab the opponent to extract a better outcome
will result in infinite punishment, incurring losses outweighing any possible
gains. With a strategy such as this, rational-self interest will provide the illu-
sion of benevolent co-operation.

In short, in a working relationship running for an infinite amount of time,
rational self-interest and the threat of infinite punishment can actually result
in decent work and decent pay.

3 Yet none of us work forever...

If approximating our employment model as an infinite series of iterated deci-
sions didn’t seem too much of a stretch, in reality this assumption is funda-
mentally flawed. For, the curious thing about the iterated Prisoner’s Dilemma



Page 18 [ssue 2, 2009 Paradox

is that as soon as the length of the iteration becomes known and fixed in ad-
vance, no matter how long the time-scale, the rational strategy once again
becomes clear; work poorly, pay less. No rational co-operation is possible.

To see this, consider your last day working in the job. On this day, like in the
original problem, there is no incentive for you to work hard, and the boss has
no incentive to pay you more. No matter any previous history of co-operation,
given the imminent end of the relationship rational self-interest takes over to
undermine the optimum outcome for both parties. Thus the last day’s decision
must rationally be (Work Badly, Pay Badly). Now consider the second last
day. Given that the decision on the last day is now logically fixed in Nash
equilibrium, neither party will be making their decision hoping to influence
the final day’s decision. Thus this situation is analogous to the decision on the
last day, that is, the single Prisoner’s Dilemma. Hence the rational decision on
the second last day must again be (Work Badly, Pay Badly). We may continue
this reasoning as far back as desired. Indeed, a simple inductive argument
will show that the rational strategy is to pay less and work less throughout
the whole working period, no matter how long.

Thus, in any work environment where the period of employment is finite and
known, no matter how long, there is no possibility of rational co-operation.

4 So,should I be working hard?

In summary, rational cooperation can only exist in a working environment
where the period of employment is either infinite (a clear impossibility), or
completely unpredictable. In all other situations the only rational decision pair
is (Bad Pay, Bad Work), no matter how long the work relationship is iterated.

Thus, the following people should immediately cease hard work:
1. Those who know exactly when they will quit their job (holiday jobs).

2. Those who are unlikely to get fired (bureaucrats, tenured professors,
anyone working in France).

3. Those approaching retirement age (perhaps, then, there is a rational rea-
son for age discrimination in the workplace!)

— Stephen Muirhead
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Don’t trust your instincts!

Here’s an easy question. What comes next in this sequence: {1, 2,4, 8, 16, ...}?
What about in this sequence: {1,1,2,3,5,...}? Still easy?

If you were rather clever, you might have guessed 32 and 8, recognising re-
spectively the first five powers of two and the first five Fibonacci numbers.
Yet if you were even more clever you would have declined to answer. Why?
Because these sequences are not well defined! It depends on which specific
sequence I am thinking of.

To see this, consider the following problems:

1. If n points on a circle are connected to each other with straight lines, how
many regions have I divided up the circle into (assuming no three lines
intersect)?

2. If I have a stack of n coins, how many different 2D towers of coins can I
build (assuming each coin on a higher level must touch two on the level
below it)?

If you decided to tackle these problems by analysing small values of n you
would get the following results; forn = {1, 2, 3,4, 5} the answers are {1, 2,4, 8,16},
and {1, 1,2, 3,5} respectively. Great, these are famous sequences! Surely, you
might reason, the solutions are 2" ! and the nt" Fibonacci number.

Yet delve a little deeper and you will find that for n = 6 things go ary. Six
points divide the circle into 31 regions, not 32, and there are nine towers of six
coins, not eight.'2

So were the original answers 31 and 9? Not a chance! Consider:

1. How many positive divisors does n! have?

2. How many ways are there to partition the integer n — 1 into one or more
positive integers, where two partions are considered identical if they dif-
fer only by the order of the partitioning elements?

Whose initial solutions are, for n = {1,2,3,4,5,6}, {1,2,4,8,16,30} and
{1,1,2,3,5, 7} respectively.!* Don’t trust your instincts!**

12Try to come up with explit formulae for a general n.

13Where I have followed the convention that there is one partition of 0

YFor more about the weird and wonderful world of integer sequences visit
www.research.att.com/ njas/sequences.
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Catenary Curves

In case you were wondering, the picture on the front cover is series of chains
hanging under their own weight. If that gets you wondering, read on. So
what shape does a chain (or string or wire) make when it hangs under its own
weight? From when I was a little boy — and yes I was thinking about such
things back then — I always imagined that the shape was that of a parabola -
OK maybe I only began to think that once I learnt what a parabola was.

Anyway I was in good company, as none other than Galileo Galilei famously
claimed this very thing.’> Of course it seemed to make sense, after all, the
parabola was already a significant curve in nature: the trajectory of projectile
is parabolic, the parabola was a simple conic section and had a focal point and,
perhaps above all, a hanging chain looks like a parabola.

The problem with all these observations it that they are not based on the
physics of the situation. So while the statement does not have to be wrong,
it would not be surprising to learn that it is. (Perhaps the Catholic Church
should have arrested Galileo for this instead.) In fact it was only about 30
years after Galileo’s death, near the end of the 15th century. that it was shown
by such greats as Gottfried Leibniz, Christiaan Huygens and Johann Bernoulli
that the curve was that formed by the cosh function.!®

We shall proceed by parametrising the curve using arc length: 7(s) = (z(s), y(s)).

To get the ball rolling, we shall consider the forces on a section of the chain
that starts at s and is ds long. We shall refer to such a section as a link.

The forces acting on the link will be those of tension and gravity. Gravity will
act constantly downwards and will have magnitude mg but the mass of the
link depends on its length, so m = p.ds. There will be two tension forces
acting in opposite directions, one on the left end of the link and the other
right. Because we do not know what magnitude of the tension force is, we will
describe it using a vector function T'(s). The function will take the value T'(s)

at the left end and T'(s + ds) at the right end. As these forces approximately

BJiirgen Renn, Galileo in Context, 2001
16The cosh or hyperbolic cosine function can be explicitly written in this form, cosh(z) =

—x

ef—e % e —e

. This fact, together with that for is sister function, sinh(z) = can be used to
prove many of the properties of the functions that are necessary but not quoted in this article.
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balance each other out, their sum is approximately zero.
—T(s) +T(s + 8s) + p.0s.g~0

T(s+ d6s) —T(s)
s

The first term on the left should seem familiar to anyone who has ever done
any calculus, and we shall manipulate it in the usual fashion.

+pug~0

lim T(s+0ds)—T(s)

7=
6s—0 0s + Hg

ds’ ds
may resolve into components:

- dx d
Now T'(s) = T(s) ( ’ y>17 and g = ¢g(0,—1) where g = 9.8 m.s™2, so we

dy
T(s)-2Z = k 1
(8) 7> = pgs + ko (1)
dx
T(s)— =k 2
(5)7 =k (2)
The constant in equation (1) is inconvenient and may be eliminated by letting
ko
t=s+ —.
Ky

Conveniently, dt = ds, and thus derivatives involving s may be substituted
with those involving ¢ and we may parameterise by ¢ instead of s. Thus (1)
becomes:

dy
T(S)g = pgt 3)
And (2) becomes:
dx

7Note: T'(s) is not necessarily the magnitude of the tension force as (fl—fg, fl—z) may not be a

unit vector.
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Dividing (3) by (4) gives:

Where a = ﬁ
ng

To proceed from here, a little basic fact about the arc length parameterisation
needs restatement.

ds = +/(dz)? + (dy)?

2
dt =dz.\|1+ (@)

Recalling that dt = ds

T
d_:z: B 1
B a
Ve
d d dy d
d_:z may be obtained similarly or by using d—i = %d—f giving:
dy ___t
dt /a2 1 2
Thus we have
z(t) = asinh ™! (L) +0b )
y(t) =vVa2+t2+c (6)

Now we are done as we have derived the parametric equation:
7(t) = (sinh™" (1) + b, Va2 + 12 +¢)

We can use this to plot out the shape of the catenary, provided we know the
endpoints of the chain and its length. However, this does not seem very satis-
tying considering our goal of classifying the shape of the catenary and it is not
immediately obvious how this will produce a cosh curve.

To show this we must rearrange (5) to express ¢ explicitly and substitute into

(6):
t = asinh (x a_ b)
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—b
y_\/a2—|—a2sinh2<x )—I—c
a

Using the identity cosh®(A) — sinh?(A4) = 1 we get:

—b
y:acosh<x )-I—C

a

Thus the shape of the catenary curve is that of the cosh graph.

Returning to the picture on the front cover, it is intended to represent the work
of the Spanish architect Antoni Gaudi whose architecture is famous for incor-
porating both parabolic and catenary arches. One of his drafting techniques
was to hang weights from chains and invert the resulting curve to model the
arches. Indeed, if we change a few signs here and there we can quite easily
show that the catenary arch (an upside down cosh graph) is the ideal arch for
supporting its own weight. However, if the arch is to support more than just
its own weight and from places other than its turning point, then the ideal
shape departs from a catenary. Indeed in a special case where the load is uni-
form along the z axis, the ideal curve is exactly a parabola. This is more or
less what occurs in a suspension bridge. So, given all the supension bridges
I have seen in my lifetime, I guess I may be excused for thinking a hanging
chain took the shape of a parabola, but the same cannot be said for Galileo.

—Narthana Epa

Solution to Puzzle 1

Put 11 balls in the first cup, two in the second and one in the
third. Then place the third cup inside the second cup (they are
paper cups, so they should be able to be squeezed a bit until
they fit!).

Puzzle 2

It takes 10 minutes to cross a bridge running at top speed. Ev-
ery nine minutes a guard comes out of a little office to inspect
the bridge. If he sees you crossing he sends you back. How
do you cross?
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Some basics of utility theory

Why do we need utility theory?

I like to think of utility theory as a way of valuing money. You're probably
wondering what I'm talking about. A dollar is worth exactly a dollar, right? It
already has a value. Well think about it this way: if you're an ex-investment
banker turned street bum, with a net worth of approximately $50, what would
you be willing to do for another $50? On the other hand, if you were Bill
Gates, what then would you be willing to do for another $50? Obviously the
two different positions result in a different valuation of money. This is where
utility theory steps in. What utility theory does is, instead of just measuring
wealth (W), it measures a function of wealth, typically denoted U(W).

Basic properties of utility functions
* We would like to think that in general, people prefer to have more money
than less. Hence, the utility function U should be an increasing function.

* We would also like to think that the more money you have, the less you
would value the next dollar. Therefore, most people have a concave util-
ity function.

Examples of utility functions

* The log utility function, U(z) = log(x)

* The exponential utility function, U(z) =1 — e~

Uses of utility theory

Utility theory is useful in many fields. It can be used to price investments and
make decisions. However, seeing as this is an article for Paradox, what better
task could there possibly be than using it to solve and create paradoxen?
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The St Petersberg Paradox

The St Petersberg Paradox is a classic paradox in probability and decision
making theory. It is effectively a random variable that has infinite expected
value. What occurs is, you flip a coin and count the number of tails that occur
until you get a heads. You are then paid 2" dollars, where n is the number of
tails that occurred.

The expected value is therefore

E:iQ”T”:il = 00.
n=0 =0

So the question is, how much would one be willing to pay to take part in this
gamble? From a statistical point of view, if you are offered this game for any
arbitrary amount of money, you should be willing to take the bet. Empirically,
and rather unsurprisingly people are rather unwilling to offer much money
at all to take part in this game. The problem is that people are in general,
risk adverse, and do not place much value on small probabilities of making
very large amounts of money. Which sounds awfully like a concave utility
function. ..

The standard solution to the problem is to take a log utility function and com-
pute the expected utility. So the expected utility is:

EU) = Z log(2™)27" = log(2) Z n2="

Which is finite and quite easy to calculate. (This is left as an exercise for the
reader. Without going into the details, it can be computed using standard
infinite sequence tricks.) The actual value of the gamble turns out to be four
dollars. So this paradox can be resolved using utility theory. Unfortunately
for us this is not always the case. ..
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The Ellsberg Paradox

The Ellsberg Paradox is paradox which is not resolved, but is rather created,
by utility theory. It is gambling paradox (the best kind of paradox!), in which
empiral observations violate the expected utility theory result.

We are given a box with 300 balls. You are told that 100 of the balls are red,
and that of the remaining balls, some of them are black, and some of them
are yellow. You are then offered the following pair of choices based on two
independent draws from the box with replacement.

In the first choice, based on the first draw, your two options are:

e Gamble A: You win 10 dollars if a red ball is drawn.

e Gamble B: You win 10 dollars if a black ball is drawn.
Your next set of options, based on the second draw, are:

* Gamble C: You win 10 dollars if a red or yellow ball is drawn

* Gamble D: You win 10 dollars if a black or yellow ball is drawn

We let R, B and Y represent the probabilities that this colour is drawn, given
what you know about the likely number of Black/Yellow balls picked. Note
that, by symmetry, if there is no external factor inducing you to believe that
black or yellow balls are prefered, then each of these probabilities is 5. Using
a utility function we get the following unsurprising results.

If, empirically, gamble A is preferred to gamble B, then this means

R-U(10) + (1 — R)U(0) > B- U(10) + (1 — B)U(0).

After a bit of fiddling and assuming an increasing utility function, this will be
true if and only if R > B. In other words, there is some external factor that
induces you to believe that there are less black balls in the box than yellow
balls, and hence than red balls.

Similarly, if gamble C is preferred to gamble D, that will be true if and only if
R > B.
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What this means is, if there is an underlying assumption that R and B are not
equal, then empirically people will make the decision to either prefer gamble
A to Cand gamble B to D, or prefer gamble C to A and gamble D to B. The other
preference pairings should not be chosen. Otherwise, if you know nothing
about the distribution of black and yellow balls, there should be no visible
favouring of any preference pairing over any other. However, empirically,
people tend to prefer gamble A to B, and gamble D to C. Which violates utility
theory.

What does this counterintuitive result show? It show that, in general, people
are not rational and do not act according to the predictions of utility theory.
Another explaination is that this paradox occurs because people do not like
ambiguity. In the first choice of A or B, A is typically chosen as the number
of red balls is known precisely and so the conditional probability given the
distribution of black and yellow balls is also known. Similarly, D is chosen
over C since the sum of black and yellow balls is also known. ..

Conclusion

So the overriding question is, just how useful is utility theory? We’ve used
it to solve a paradox, and on the otherhand used it to create one (albeit not
one that I would consider a genuine paradox). The answer to our question
is, useful to a degree. It’s useful to make decisions when you have time to
analyse the situation properly. However, they key problem is, how do you
choose a utility function? Who can honestly sit down and say “Why yes! My
valuation of wealth is via a log utility function!” Still, utility theory gave me
enough material for a paradox article so maybe it isn’t so useless after all. ..

— Han Liang Gan

Solution to Puzzle 2

After the guard has returned to his office, run across the bridge
for eight minutes, then turn around and run back towards the
middle of the bridge. When the guard comes out he will see
you running towards the original side, and thinking you are try-
ing to cross in that direction, will send you back.
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Solutions to Problems from Last Edition

We had a number of correct solutions to the problems from last issue. Below
are the prize winners. The prize money may be collected from the MUMS
room (G24) in the Richard Berry Building.

Farshid Jamshidi solved problem 3 and may collect $3.
Adrian Khoo solved problem 3 and may collect $3.
Matthew Kotros solved problems 2, 4, 5, 7 and may collect $16.

Jensen Lai solved all the problems and may collect $21.

1. Solve a? 4+ b* + ¢ = a?b? in the integers.

Solution: We will use a classic infinite descent argument to show that
the only solution is (0,0,0). First we note that a = b = ¢ = 0 satisfies
the equation. Next, we will assume there exists a non-trivial solution.
Let (ag, bo, co) be the ‘smallest’” non-trivial solution, in the sense that it
minimises a? + b? + ¢2. Now, consider the equation modulo 4. Squares
are either 0 or 1 modulo 4, and checking all possibilities we find that
the only solution is a®> = b* = ¢ = 0 (mod 4). Thus ag, by and ¢
are all even, and hence we can construct a ‘smaller” solution (%, %0, %),
contradicting the minimality of our original solution.

2. Inatriangle ABC, ZA = 120°. Find the length of the angle bisector from
A in terms of AB and AC.

Solution: Let D be the foot of the angle bisector. Construct point £ on
line AC such that ZAED = 60°. As /DAFE = %ZBAC’ = 60°, we know
that ADE is an equilateral triangle. Clearly AABC ~ AEDC, and thus
% = % hence 4¢=AE — Zg. Using our relations AD = DE = AFE

AC
AC—-AD AD : : AB.AC
we get =5~ = 45 Rearranging gives AD = 575

3. If f is a function such that f(ab) = 5 (f(a)+ f(b)), find f(1234) — f(4321).
Solution: b = 1 yields f(a) = 3(f(a) + f(1)) & f(a) = f(1) for all a.
Thus £(1234) — f£(4321) = f(1) — f(1) = 0.

4. Solve the equations 9(z — y)(z? + y*) = 1,5(z + y)(2? — y?) = 1 in the
reals.
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Solution: Since = # y, we have 9(x? + 3?) = x—iy = 5(x? + y* + 2zy) ..
42?2 + 4y* — 102y = 0 & 2?2 + y? — Szy = 0. Using the quadratic formula,
— 1 — i 2 _1_ i — Lo vi =1 =2

r =2y, 5y. x = 2y yields (45% '] ), whilst x = Sy yields (45% 'l ).
5. You are in the centre of a circular pond 100 metres in radius. There is a
zombie on the pond’s edge that wants to eat you. The zombie can walk
at4 m/s and can’t swim; you can swim at 1 m/s and run at 7 m/s. Can

you escape the zombie?

Solution (from Jensen Lai): Firstly I swim 24m towards the zombie. As-
suming that the zombie will always walk towards the point on the pond’s
circumference closest to me, it won’t move.

I now begin to swim in a circle of radius 24m concentric with the pond,
with the zombie following me around the circumference of the circle. My
circle has circumference 487 metres whilst the circumference of the pond
is 200 metres which is more than four times longer. As I am travelling
at 1/48m radians per second whilst the zombie is only moving at 1/507
radians per second, eventually the zombie and I will be on opposite sides
of the pond.

I now swim directly away from the centre of the pond towards the edge
of the pond covering a distance of 76m in 76s. Meanwhile, the zombie
must walk half way around the pond to catch me - a distance of 1007
metres taking 25m ~ 78.54s — which means that I will reach the edge
before the zombie can get to me. From this point on I can outrun the
zombie and thus escape.

6. Euler proved at least one new theorem every day. To conserve energy,
however, he proved no more than 50 theorems in any month. Show that
there is a succession of days in a year where Euler proves exactly 125
theorems.

Solution: It’s sufficient to prove it for a 365-day year. Consider a, . . ., ases,
where a; is the total number of theorems after j days. Also, let b; =
a; + 125 for all j. a; < 12 x 50 = 600 Vj. Also, b; < 600 + 125 = 725 V.
Hence a1, ..., as6s5,b1, . ..,bsss are 730 numbers in {1,2,...,725}, so the
pigeonhole principle tells us that two of them are the same. As Euler
proved at least one theorem per day, the a; are pairwise distinct, and the
b; are also pairwise distinct. Thus a; = b; = a; + 125 for some i, j. Then
125 theorems are proven during days< +1,..., .

7. An object initially at (0,0) moves at all times toward another object ini-
tially at (1, 0) and which is moving in the y direction. Both objects have
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the same constant speed. Find the path of the first object.

Solution (from Matthew Kotros): Let f(¢) = (x(¢),y(t)) denote the path
of the first object. Now the second object moves along the path g(t) =
(1, A\t), where X is the speed of both objects. Since the first object moves
at all times toward the second, the tangent vector must have magnitude
A and be in the direction of g(t) — f(¢). So we must have

£(t) = (&,9) = A1 — 2, At =)/ (1 — 2, At = y)].

Thus —=

dy 'y M-y
===

y . Now At is the distance along the path f that the
T

l1—=x

2
first object has travelled in time ¢, i.e. At = Ox(t) 1+ (%) dz.

1—x— / \/14— dm—y,

and taking the derivative of both sides w.r.t. z yields

Hence

d’y dy dy\* dy
1l—a)—2 - L =14+ (2 .
( x)dxz dx i <d:1:> dx
. dy dw D
Letting w = 1 e have (1 — z) o= v 1+ w?, which is separable and
x x
dw dx 1
SO | —— = . Hence sinh™ " (w) = —log |1 — z| + ¢
f V1t w? f 1— 2 (w) gl |

Now at ¢ = 0, we have f(0) = (0,0), and so w = 2220 = (0. Thus
¢ = sinh™'(0) + log |1 — 0| = 0, so that w = sinh(—log |1 — z|). We may

assume x < 1, as the path begins at (0,0), and so

dy e~ log(1l—x) __ elog(l—m) 1 (1 . CC)
de 2 2(1 —2) 2

Thusy = —3log(l1 —z)+ 2 (1 —2)? +d, and sincey =0 whenx = 0, this
implies that d = —1/4. Therefore y = —1 log(1 — z) + §(2* — 2z).
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Paradox Problems

Below are some puzzles and problems for which cash prizes are awarded.
Anyone who submits a clear and elegant solution may claim the indicated
amount (up to a maximum of four cash prizes per person). Either email the
solution to the editor (see inside front cover for address) or drop a hard copy
into the MUMS room (G24) in the Richard Berry Building; please include your
name.

1. ($2) In a round robin tournament involving k teams, where every team
plays each other exactly once, show that >, (wy)? = >, (Ix)?, where
wy, = the number of wins that team k collects and [, = the number of
losses that team k collects.

2. ($2) Draw n straight lines in a plane such that no three intersect. Show
that the resulting regions can be 2-coloured, that is, coloured in one of
two colours such that no two bordering regions share the same colour.

3. ($3) n real numbers are written on the board. Each turn two numbers «a
and b are erased and replaced with a+ 2 and b— £. Can the set of original
numbers every be regained?

4. ($3) Four points A,B,C and D lie on a circle radius r such that AB =
CD = +/2r, BC =6 and AD = 8. Find 7.

5. ($3) On an nxn chess-board we infect n — 1 of the squares. Each minute
the infection will spread to a non-empty square if at least two of its four
direct neighbours are already infected. Could the infection eventually
spread to cover the whole board?

6. ($4) A triangle ABC has P on AB, Q on BC and R on AC such that APQR
is equilateral. Also, AP = B} = CR. Prove that AABC is equilateral.

7. ($5) MUMS-land contains a thousand cities and possesses a dirt-road
network such that a person at any city can get to any other city along
them. The king of MUMS-land, Han, decides to pave some of the roads.
Show that it’s possible to pave some of these roads in such a way that
every city is connected to an odd number of paved roads.

Paradox would like to thank Han Liang Gan, James Zhao,
Sam Chow, Narthana Epa, James Wan, Anton Todorov and
Andrew Szollosi for their contributions to this issue.
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Upcoming Events

University Maths Olympics

* The biggest MUMS event of the semester.
» Will take place in the second half of the semester.

* Watch the Richard Berry building for more details closer to the date.

Terry Tao Lecture

e Come see ‘The Tao’: Australia’s own "Mozart of Maths’, the 2006 Field
Medalist, and ‘probably the best mathematician in the world’!!

* Bring a copy of Paradox to get his signature!

* 6pm Monday 31 August, Copland Theatre.

SUMS Puzzle Hunt

* Warm up for the MUMS Puzzle Hunt!
* The week starting Monday 31 August.
* Google ‘SUMS Puzzle Hunt’ for details.

1John Garnett, professor and former chair of mathematics at UCLA.



