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Two men lost in a hot air balloon drift through clouds for hours.
Suddenly, the clouds part, and the two men see the top of a
mountain with a man standing on it. "Hey! Can you tell us
where we are?!"
The man doesn’t reply. Minutes pass as the balloon drifts past
the mountain. When the balloon is about to be swallowed
again by the clouds, the man on the mountain shouts: "You’re
in a balloon!"
"That must have been a mathematician." "Why?" "He thought
long and thoroughly about what to say. What he eventually said
was irrefutably correct. And it was of no use whatsoever. . . "
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Words from the Editor

Welcome to 2012’s first issue of Paradox, the magazine produced by the
Melbourne University Mathematics and Statistics Society (MUMS). Over the
past few years, this publication has morphed from a problem-solving extrav-
aganza to a forum for bad maths jokes, and then a recovery period coinciding
with a preoccupation about a now world-famous past Vice-President.

Now you will find some bad maths jokes still, but they are scattered through-
out this issue. The next MUMS alumnus to be interviewed by Paradox is
quite a local celebrity, and the next biography tells the life of a famous math-
ematician who was so accomplished in all that he did that even some of his
contemporaries began to doubt his ability to do truly anything!

One of the unsolved problems assigned in the last issue receives a thorough
discussion as to why it still remains unsolved, and a particular profession’s
prestige is traced back to a series of difficult mathematics examinations once
held at the University of Cambridge. Meanwhile, our new photo comic strip
hero embarks on his very first mission in Episode 2 of The Adventures of Rubik’s
Turtle!

While Paradox has existed since 1981, another publication by MUMS in the
past has recently been unearthed in the depths of the library archives. If you
want to help us discover more about this publication, please send us an email
to paradox.editor@gmail.com. If you are instead interested in learning more
about Paradox in the past, there are copies of old issues in the library as well
as on our website.

The problems from the last issue of Paradox remain unsolved, and the grand
prize unclaimed. Will you be able to solve them all before the next issue
comes out? If not, feel free to contribute an article, or better yet, something
new of your own!

— Kristijan Jovanoski

Q: Do you already know the latest stats joke?
A: Probably. . .
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Words from the President

Hello and welcome to another year at MUMS. This semester, we have our
usual array of activities including weekly seminars, trivia and games nights,
and our much-loved Puzzle Hunt.

As this is the first issue of Paradox for the year, let me take this opportunity
to encourage all of you to participate in MUMS activities. The Melbourne
University Mathematics and Statistics society is a club that is run by students
who share a common love for mathematics (the statistics bit may need a bit of
work). Our aim is to expose students to mathematics that is fun, fascinating,
and not covered in coursework. That is, we just do fun stuff!

If you want to know what MUMS is all about, the best way to find out is
to head over to G24 in the Richard Berry Building (otherwise known as the
MUMS room) to meet our regular members and ask them. The room is open
to everyone, so don’t feel shy to just pop in and say hello. The MUMS room
is a place to rest and hang out with other students. Very little work is done in
this room, and that’s the way we like it. Of course, if you have a cool maths
problem we enjoy those too!

MUMS also runs weekly seminars where we invite guest speakers to talk
about interesting mathematics. This semester, they will be held at 1:00 pm
every Friday in the Latham Theatre on the ground floor of the Redmond
Barry Building. Listening to talks about maths during lunch may seem odd,
but let me assure you that there is nothing better that you could possibly be
doing. Look around the maths building for posters and abstracts!

Lastly, the Puzzle Hunt is the biggest event run by MUMS and will begin
shortly after the Easter break. It is a week-long puzzle-solving extravaganza
involving teams from all over the world. If you’ve never participated be-
fore, then I strongly encourage you all to do so. The puzzles themselves are
not mathematical, but they do take quite a bit of imagination to solve. For
examples of past hunts, please visit our website.

But for now, enjoy the rest of Paradox. I hope to see all of you throughout
the year. All the best!

— TriThang Tran
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The Adventures of Rubik′s Turtle

Episode 2: Cyril’s Circus of Circuits

Previously, a poor orphan Rubik’s
cube is rejected by society and seems

destined for a life of petty crime.

Until he meets the mysterious
Mother-of-all-Rubiks, who teaches
him to become the hero Rubik′s

Turtle!

His first mission: to rescue a
helpless Rubik’s cube from the
clutches of the evil Cyril and

his Circus of Circuits!

First he faces the poor cube’s jailer: Eric
the Evil Extension Cord!
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He defeats the fiendish power
cable and frees the cube!

But before they can escape, the
disturbance is noticed and the alarm is

raised by Oliver the ’Orrible Oscilloscope!

Their escape is blocked by another of
Cyril’s minions: Sid the Sneaky Soldering

Iron.

But Rubik′s Turtle defeats
the villain and they continue

their flight!
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Another scoundrel blocks their way:
Derek the Dastardly Disc Drive. . .

. . . who is also overcome by the
courageous Rubik′s Turtle!

But before he has time to celebrate his
victory, he is knocked unconscious by an

attack from behind from Harry the
Horrible Hammer!

When he awakes, he finds
himself tied up, and face to face

with the fiendish floppy disc
and self-proclaimed ringmaster

Cyril himself!



Paradox Issue 1, 2012 Page 9

“You’ve caused us quite some trouble, boy! So
now you shall die!” cries the wicked Cyril as the

heated Sid moves to deal a fatal blow. . .

Is this the end for our new hero? Has he failed, in his very first mission? Find
out, in Episode 3 of The Adventures of Rubik′s Turtle!

— Dougal Davis and Jinghan Xia

A math professor, a native Texan, was asked by one of his
students: "What is mathematics good for?" He replied: "This
question makes me sick! If you show someone the Grand
Canyon for the first time, and he asks you ‘What’s it good for?’
What would you do? Well, you kick that guy off the cliff!"
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Mathematical Miscellany

1. A sphere has two sides but there are one-sided surfaces.

2. In a group of 23 people, at least two have the same birthday with the
probability greater than 1/2.

3. There are curves that fill a plane without holes.

4. A clock never showing the right time might be preferable to one show-
ing the right time twice a day.

5. The next sentence is true but you must not believe it.

6. The previous sentence was false.

7. Among all shapes with the same perimeter, a circle has the largest area.

8. Among all shapes with the same area, a circle has the shortest perimeter.

9. One can divide a pie into eight pieces with just three cuts.

10. There is something the dead eat but if the living eat it, they die.

11. The billionth digit of π is 9.

12. 111, 111, 111× 111, 111, 111 = 12, 345, 678, 987, 654, 321.

13. You would have to count to one thousand to use the letter ’A’ in the
English language to spell a whole number.

14. Almost everything you can do with a ruler and a compass you can do
with the compass alone.

15. In elliptical geometry, the sum of the angles in a triangle does not have
to be equal to 180◦.

Three statisticians go hunting. When they see a rabbit, the first
one shoots, missing it on the left. The second one shoots and
misses it on the right. The third one shouts: "We’ve hit it!"
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Interview with a MUMS Alumnus

Background

Andrew Kwok(star) is a former member of MUMS. He studied at Melbourne
University from 2003 until 2008, graduating with Honours in a Bachelor of
Commerce (majoring in Actuarial Studies) and a Bachelor of Science (ma-
joring in Statistics). After completing two internships in Hong Kong and a
graduate program at AXA in Melbourne, he now works with AMP (which
merged with AXA) as a Strategy Analyst in Sydney.

MUMS

Why did you join MUMS?

I’d kind of been involved in it since high school. In Year 9, we participated
in the SMO (School Maths Olympics) and came first that year, beating Scotch
[College]. We had a healthy competitive rivalry with Scotch all the way until
Year 12. When uni started, I became more involved in activities and even-
tually became first year rep, then Treasurer the next year (2004) and then
President the following year (2005). Also, I already had friends there who
were closely involved in MUMS, through my IMO (International Mathemat-
ics Olympiad) training days.

Did you really bribe the first years to win MUMS presidency? No, I re-
member you were wildly popular in MUMS. Do you want to tell me what
that was all about?

I don’t know why [laughs]. High grades? Most people were friends from
high school whom I knew well. I have no idea.

Yes, but your nickname was KWOKSTAR! Does it have anything to do
with the fact that your average grade is 99?

[Laughs] No, it’s not that high! Let’s say around the mid 90s . . . it’s harder to
score high marks in commerce, especially non-maths ones.

What did you get up to in the MUMS room?

Sometimes we played games, sometimes we did work, sometimes we just
hung out and chatted. My favourite MUMS event was probably the UMO
(University Maths Olympics). The best thing about MUMS is the friends you
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make, and all the activities that happen throughout the year. The MUMS
room is just a fun place to go where you can hang out!

Career

Tell me about your internships in Hong Kong.

The first was with a local consulting firm, the second was actuarial consulting
with a multinational firm. The first internship gave me my first real experi-
ence of working in an actual firm. Since working is so different from study-
ing, you quickly realise there’s all these other skills that you need. I learnt a
variety of skills including communication, writing reports, time management,
etc.

Once you have some work experience, you find it much easier to get work
experience at bigger, multinational firms. My first consulting role helped
me gain the actuarial consulting role as part of the second internship. That
internship was awesome! I had the opportunity to apply the actuarial knowl-
edge I’d learnt at uni, learnt a lot about financial markets across Asia, devel-
oped more technical skills such as Excel and Database and also made a real
contribution on live projects.

Why did you leave Hong Kong for the graduate program at AXA?

Melbourne was the headquarters for AXA’s Asia-Pacific operations, so I be-
lieved there would be a lot of different opportunities available working in
the head office. They have a really good graduate program: it’s a three-year
program with five rotations. Each rotation is a full-time role, so straight away
you’re doing real work and learning a lot on the job. They have a strong
support program to continue with your actuarial examinations. In addition,
the culture at AXA felt right for me. There was also the opportunity to rotate
to Hong Kong!

Which rotations did you choose, and what did you do in each?

In total I did three rotations: two actuarial rotations (one in finance, one in
pricing), then one rotation in Group Strategy.

The first rotation was in the Finance Department where my role involved
calculating profits for AXA’s income protection business in Australia and
New Zealand. This is a type of life insurance policy that provides you income
if you’re unable to work for a period of time. During reporting periods,
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I would run projection models to estimate the future claims that we’d likely
need to make compared to the revenue we were likely to receive in the future.
Based on these long-term projections, I could then estimate the profit earned
during each period. I also assisted in writing regular reports to provide more
detailed analysis and commentary on the experience. During non-reporting
periods, it’d be a matter of helping various teams perform ad-hoc analyses as
well as improve projection models and overall processes to increase efficiency.

The second rotation was in the Product Department where I assisted in pric-
ing and risk management for a capital guaranteed product called North. The
idea of the guarantee is that if markets go up, your investment will also go up,
but if the markets go down over a period (usually 1 year or 2 years), then the
investment will stay flat. In return for receiving the guarantee, the investor
needs to pay a fee. Part of my role was assisting the team in calculating what
fees we needed to charge to ensure that we could cover the guarantee and
other costs associated with managing the product. This area requires quite
complicated postgraduate mathematics in areas such as stochastic calculus
in order to calculate the fee, since you need to allow for a large variety of
possible future scenarios.

At the moment your permanent role is with strategy. Why did you prefer
that rotation?

There were a variety of reasons. One of the benefits of the graduate actuar-
ial program is that they encourage you to try one rotation in a non-actuarial
team. So I decided to give Strategy a try. While the actuarial rotations were
very analytical and focused on particular areas, Strategy gave me a high level
overview of the company, where I needed to understand how each part of
the company operated. It provided a good opportunity to meet people from
across the business. I still had the opportunity the continue developing an-
alytical skills (being an actuary by profession, they trust that I have strong
analytical skills), but I was also able to improve other skills including stake-
holder management and strong communication skills through writing reports
and preparing presentations.

During my rotation in Strategy, AXA sold off their Australian and New
Zealand businesses to AMP. When the merger happened, AMP offered me
a permanent role as a Strategy Analyst in Sydney, where I’ve been working
since July last year.
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Does one have to train as an actuary to do what you do, or can they just
study maths?

For the finance and pricing rotations, it is important to have strong actuarial
knowledge and skills. During these rotations, I continued studying for actu-
arial examinations in order to qualify as a Fellow of the Institute of Actuaries
of Australia (FIAA) and as a Chartered Enterprise Risk Actuary (CERA).

In Strategy, you’ll find people working from a variety of backgrounds by
no means limited to actuarial since this work requires a variety of skills,
such as strong communication (both written and verbal), the ability to think
strategically as well as strong stakeholder management and negotiation skills.

And does studying maths help with that? Before you said that studying
was very different to working.

Not really, actually! Studying mathematics can help you develop strong ana-
lytical skills; programming is also useful. Analytical skills including problem
solving are useful, but other skills are equally important, such as strong inter-
personal skills, time management, communication etc. You can’t be a brilliant
analytical person but find it difficult to communicate your findings with oth-
ers. People need to be able to work with you on a regular basis.

So learning maths at uni encourages analytical and problem-solving skills
that are employers seek, but you can’t just be a bookworm?

Yes, strong analytical skills and great academic results may get you to the
interview stage (plus if you have some work experience it always helps) but
often it’s the other skills that you display during the interview stage that
will help secure you the job. Have a personality! I think it’s a combination
of competent technical knowledge (in whatever field you’re in) and whether
you’d think they’d work well in your company (which is partly a gut feeling).
Working in a company with the right culture is important.

I’m sure final year students will appreciate your tips. So why did you study
maths at uni?

I was interested in maths and I was good at it in high school. But I always
wanted to work in a company and commerce was an area that interested me.
Actuarial was a good compromise between wanting to work in a company
and doing something analytical. For people who want to study commerce
but enjoy mathematics, I think finance or actuarial studies is a good option.
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Random and Interesting

Did you ever go on exchange?

During uni I started learning Japanese, and became more interested in Japanese
culture. Hence, I went on exchange to Tokyo University in Japan to study
Japanese language, Japanese linguistics, and international relations. I strongly
recommend going on exchange! For me, it’s definitely been one of the most
fun times of my life so far. There were heaps of awesome experiences, I made
many great friends from across the world and got the chance to immerse my-
self in a completely different culture while developing my foreign language
skills. I think you also develop a broader, more international perspective,
which helps you observe and appreciate things from multiple angles.

Why do you come down to Melbourne to get your hair cut? Are the haircuts
in Sydney really that bad?

[Laughs] That’s more out of convenience! I come back to Melbourne on a
regular basis, sometimes for work, sometimes to visit family. My hairdresser
in Melbourne is a family friend.

I hear you are quite popular with the ladies at AXA . . . your family friend
must be really good!

No comment! I think your questions are starting to get sidetracked . . .

— Lu Li

If you are interested in being interviewed for Paradox, please
send an email to paradox.editor@gmail.com. Include your
name, occupation, and relation to or interest in MUMS.

An actuary is someone who brings a fake bomb on a plane to
decrease the chances that there will be another bomb on the
plane.
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Biography: Eratosthenes (276-195 BC)

The ancient Greek mathematician Eratosthenes was consid-
ered a leading all-rounder in his time, for he was also a
widely-acclaimed astronomer, athlete, music theorist, and
poet. A Renaissance man centuries before the Renaissance,
he was called Pentathlos, champion of multiple skills, by
some of his contemporaries, and his breadth of knowledge

secured him the prestigious post of Librarian in the Great Library of Alexan-
dria, Egypt, the greatest repository of classical knowledge until it was tragi-
cally destroyed in 642 AD.

The sieve.

Mathematics best remembers Eratosthenes of Cyrene for
the simple algorithm he developed for finding prime num-
bers, now known as the Sieve of Eratosthenes. It is able
to find all prime numbers up to any given limit by itera-
tively marking as composite (not prime) the multiples of
each prime, starting with the multiples of 2.

The multiples of a given prime are generated by starting
from that prime and marking the sequence of numbers with
the same difference, equal to that prime, between consecu-
tive numbers. The Sieve of Eratosthenes, despite seeming
rather simple and primitive, is actually one of the most effi-
cient ways to find all of the smaller primes below numbers
approaching tens of millions.1

One of his lasting achievements was coining the word ’geography’ and in-
venting the discipline of geography that remains with us today. He also
developed a system of latitude and longitude, and was the first person to not
only calculate the circumference of the Earth (using the length of stadiums
of his time as units of measurement), but also calculate the tilt of the Earth’s
axis with remarkable accuracy for his time.

These achievements were evidently not enough for him as he also had enough
time to sketch the course of the Nile from the sea to Khartoum, and he cor-
rectly predicted that its source lay in great upland lakes that he would never

1Euler’s proof of the zeta product formula, discussed later in this issue of Paradox, contains
a version of this sieve in which each composite number is eliminated exactly once.
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visit. He also deduced the length of the year as 365.25 days and suggested
that calendars should have a leap day every fourth year. He criticised Aris-
totle’s belief that humanity was divided into Greeks and barbarians, and he
believed that there existed good and bad in all peoples. Eratosthenes became
blind in old age and possibly committed suicide by starvation at the ripe old
age of 82.

Interestingly, despite being so well-accomplished in so many different areas,
Eratosthenes was widely considered to fall short of the highest rank, and was
mocked by some of his detractors as a jack-of-all-trades and master of none:

[Eratosthenes] was, indeed, recognised by his contemporaries as a man
of great distinction in all branches of knowledge, though in each subject
he just fell short of the highest place. On the latter ground he was called
Beta, and another nickname applied to him, Pentathlos, has the same
implication, representing as it does an all-round athlete who was not the
first runner or wrestler but took the second prize in these contests as well
as others.2

— Kristijan Jovanoski

How Eratosthenes calculated the circumference of the Earth.
(Source: NOAA National Ocean Service Education)

2Heath, T.L. (1921) A History of Greek Mathematics.
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An Inquiry into a Public Preconception of
Actuarial Science

Whenever I tell strangers that I am studying actuarial studies, I am instanta-
neously received with immense flattery as they compliment my mathematical
abilities and my general supposed superior intellect. I greet this with mixed
reactions; such praise inevitably catalyses the aggrandisement of my self-
esteem yet I am also filled with curiosity regarding why exactly am I labelled
“smart” by the layman? Yes, an actuary employs “complicated” mathemat-
ics to solve problems, but so do many other occupations, such as physicists,
econometricians, and engineers. A qualified actuary must pass a series of
tough professional exams, but so must land surveyors, accountants, and soft-
ware engineers. Surely there exist other explanations? Therefore, I felt it
incumbent upon myself to investigate this matter further by delving deep
into history to uncover some possible clues.

The Tripos

My search brought me to the (old) Mathematical Tripos, a series of difficult
examinations sat by undergraduates studying Mathematics at the University
of Cambridge. From 1753 to 1909, the aggregate score of each student was
tallied and the results of the successful candidates were published in order of
merit. Those who gained first class honours earned the title of “Wrangler”,
with the highest scoring student named “Senior Wrangler”, the second high-
est “Second Wrangler” and the lowest scoring Wrangler was aptly named
the “wooden spoon”. Although the actual marks were never made publicly,
Forfar1 noted that in one year, out of a possible 17,000 marks, the Senior
Wrangler obtained 7634 marks, the second Wrangler obtained 4123 marks,
and the wooden spoon obtained around 1500 marks. The lowest scoring can-
didate who received the degree obtained just 237 marks. These results may
well provide some insight into the difficulty of the examinations and why
earning the title of Senior Wrangler was considered to be quite an outstand-
ing intellectual accomplishment.

1See Forfar, D.O. (1996). What Became of the Senior Wranglers?, Mathematical Spectrum, 29(1)
for more details. The article draws on this paper throughout.
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Naturally, much attention centred around those who
achieved the top rankings. However, since the exams
where largely a test of speed in the application of fa-
miliar techniques together with memory work, many
Senior Wranglers were in fact diligent, hardworking
students rather than exceptionally original. One exam-
ple pertains to the mathematical physicist Lord Kelvin,
who thought that he would unquestionably be the
undisputed Senior Wrangler. He asked his servant to
run down to the Senate House and find out who was Second Wrangler on
the day the results were published. To his great despair, his servant returned
and announced “You, Sir.”

Lord Kelvin had been beaten by Stephen Parkinson, who did not possess
the same level of mathematical originality as Lord Kelvin (who later won the
Smith’s Prize for original research), but was nevertheless exceptionally intel-
ligent and trained himself to solve problems at great speed. Other prominent
inventive and original students who did not gain the top ranking include
Hardy2 (fourth), Russell3 (seventh), Malthus4 (ninth) and Keynes5 (twelfth).

To Actuarial Science

Although many of the top Wranglers were eventually appointed as professors
of mathematics, this was not always the case. Indeed, many saw the Tripos
as paving a pathway for other professions such as those in medicine, law,
the church, and actuarial practice. Since actuarial science relies heavily on
mathematics, in particular probability theory and statistics, many esteemed
Wranglers entered the actuarial profession. This, to some extent, provides a
credible answer to the compliments actuaries receive about their mathemati-
cal abilities; it is justified on the grounds that many actuaries are in fact top
mathematics students who decide to dedicate their lives instead to actuarial
practice.

2Pure mathematician and author of A Mathematician’s Apology. See Great Lives in Paradox
Issue 1, 2011 for more about Hardy’s life.

3Logician and one of the founders of analytic philosophy.
4Early economist known for his controversial publication An Essay on the Principle of Popula-

tion, which hypothesised the destruction caused by excessive population growth.
5Macroeconomist advocating the use of fiscal and monetary measures to navigate the econ-

omy.



Page 20 Issue 1, 2012 Paradox

For instance, although James Joseph Sylvester, a Sec-
ond Wrangler, was better known for his contributions
in pure mathematics,6 he nevertheless made significant
contributions to the actuarial profession. He played a
central role in the establishment of the world’s first ac-
tuarial professional body in 1844, the Institute of Ac-
tuaries, with the responsibility for setting the profes-
sional standards for an actuary.7 In the Royal Charter,
the role of an actuary was formally defined as a prac-
titioner dealing in matters in connexion with “financial

questions particularly in reference to those numerous and important ques-
tions involving the scientific application of the doctrine of probabilities and
the principles of interest”.

Sylvester, among 94 others, were instantly fellows of the Institute and worked
hard immediately after the Institute was conceived. Among his most impor-
tant roles was preparing a syllabus. It was decided that there would be three
exams; the first, a mathematical exam in “Arithmetic and Algebra, the ele-
mentary doctrines of Probability, Simple and Compound Interest, and in the
theories of Life Assurance and Annuities”, the second, on the elementary
principles of constructing the life table and the third, on bookkeeping and
questions related to actuarial practice.

Similar to mathematics, symbols and notations are also vital in actuarial prac-
tice as a means of conveying the greatest amount of information in as few
strokes as possible. Hence, they have to be efficient, memorable, and mal-
leable. To the actuary, these symbols are superficial, but to the bystander,
they most likely appear inscrutable and exceedingly alienating. It may well be
due to the discouraging nature of such symbols to the untrained eye, which
causes the layman to perceive the actuary as intelligent for he understands
such symbols with much ease. Not only do actuaries employ the usual

∫
,

∑ and ex with their usual mathematical interpretations, but also they have
invented their own elaborate system to denote frequently used formulae; e.g.

an =
1− vn

i
;

6Among some of his achievements are coining the words ’graph’ and ’discriminant’.
7See James Joseph Sylvester: Jewish Mathematician in a Victorian World by Karen Hunger Parshall

for more information.
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( Ī ā)x:n =
∫ n

0
te−δt

t px dt;

p
t|A

(m)1
x:n =

m(t+1)−1

∑
r=mt

vp(r+1)/m.r/m px.1/mqx+r/m.

To demonstrate the powerful simplification process of such notation, the sec-
ond formula represents the mathematical expectation of the present value
random variable calculated at a force of interest of δ p.a., where a payment
at a rate of $t p.a. is paid continuously for a maximum of n years, provided
that an individual now aged x is still alive in t years’ time.

Many other Wranglers also proceeded into actuarial science: Pell (1849 Senior
Wrangler), Sprague (1853 Senior Wrangler) and Friend (1780 Second Wran-
gler) and within Europe, many prominent mathematicians such as Cramer,
Lundberg, and Lah also made great contributions to the field. Although the
Old Tripos system was abolished following much scrutiny (in particular from
Hardy) and replaced with a new system, where only the class of degree was
publicly available, an examiner “unofficially” now reveals the identity of the
Senior Wrangler by tipping his hat when reading out the student’s name.

In recent times, many Wranglers continue to pursue actuarial science; Mc-
Cutcheon (Wrangler 1962), now an Emeritus Professor of Actuarial Studies,
has made significant contributions to the field, although he is known to many
actuarial students as co-author of An Introduction to the Mathematics of Finance,
considered by some to be a timeless textbook. Therefore, it is ostensibly clear
that much of the merit and distinguishing prestige attached to the modern-
day actuary is actually largely attributed to the successes of their predeces-
sors.

— Timothy Lee

Q: What do you call an actuary who is talking to someone?
A: Popular.
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The Riemann Hypothesis

1644.

Pietro Mengoli poses the following problem: determine the exact value of

∞

∑
n=1

1
n2 =

1
12 +

1
22 +

1
32 + . . . ' 1.645.

Do you know what the value is? Can you guess who proved it?

1735.

Leonhard Euler announces that
∞

∑
n=1

1
n2 =

π2

6
.

Wow. Here follows Euler’s original proof. Some steps require detailed justifi-
cation, but Euler knew that his answer was correct because he checked some
partial sums. He did not present a completely rigorous proof until 1741;
however his original proof is typically clever. A modern approach would use
Fourier series.

Proof. By Taylor expansion of sin(x),

sin(x)
x

= 1− x2

3!
+

x4

5!
− . . . .

Note in particular that the coefficient of x2 in the Taylor expansion of sin(x)
x at

x = 0 is

[x2]
sin(x)

x
= −1

6
. (1)

One can check that the roots of sin(x)
x (in C) are nπ, for n ∈ Z \ {0} (use the

expression sin(x) = eix−e−ix

2i ). Factorizing into linear factors, analagously to
the fundamental theorem of calculus,

sin(x)
x

=
(

1− x
π

)(
1 +

x
π

)(
1− x

2π

)(
1 +

x
2π

)(
1− x

3π

)(
1 +

x
3π

)
· · · (2)

=
(

1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
· · · .
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Now

[x2]
sin(x)

x
= − 1

π2

∞

∑
n=1

1
n2 ,

so, recalling equation (??),
∞

∑
n=1

1
n2 =

π2

6
.

Solving this problem made Euler famous, for it had stumped the leading
mathematicians of his day. It is now known as the Basel problem, after Euler’s
hometown in Switzerland.

Using Fourier series, you can also prove that
∞

∑
n=1

1
n4 =

π4

90
.

Using modern complex analysis, it is not too difficult1 to determine the value
of ∑∞

n=1
1

n2k in terms of Bernoulli numbers, for k ∈ Z>0:

ζ(2k) = (−1)k+1 B2k(2π)2k

2(2k)!
, k ∈ Z>0. (3)

The series

ζ(s) :=
∞

∑
n=1

1
ns = 1 +

1
2s +

1
3s + . . .

certainly converges for s = 2, 3, . . ., however the values are not as easy to
compute when s is odd. It was not until 1979 that Apéry proved that ζ(3) is
irrational.

The harmonic series
ζ(1) = 1 +

1
2
+

1
3
+ . . .

diverges. However, ζ(s) converges for all s ∈ R>1, by the integral test. We
can now extend the domain of the function ζ:

ζ(s) :=
∞

∑
n=1

1
ns = 1 +

1
2s +

1
3s + . . . , s ∈ C, Re(s) > 1,

1You might learn this in a Masters course. See Flajolet and Sedgewick, Analytic Combinatorics,
pp. 268-9.
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since the series converges absolutely. Note that the function ζ is complex
analytic.

The domain of ζ can be further extended to {s ∈ C : Re(s) > 0} \ {1} as
follows.2 Let s ∈ C \ {1} be such that σ := Re(s) > 0. By a telescoping series,

ζ(s)− 1
s− 1

=
∞

∑
n=1

[
n−s −

∫ n+1

n
x−sdx

]
=

∞

∑
n=1

∫ n+1

n
(n−s − x−s)dx. (4)

For n ∈ Z>0 and x ∈ [n, n + 1],

|n−s − x−s| =
∣∣∣∣∣s
∫ x

n
y−1−sdy

∣∣∣∣∣ ≤ |s|
∫ n+1

n
|y−1−s|dy

= |s|
∫ n+1

n
|y−1−σ|dy ≤ |s|n−1−σ.

(5)

As
∞

∑
n=1
|s|n−1−σ = |s|

∞

∑
n=1

n−1−σ

converges absolutely, the comparison test implies that the series in equation
(??) converges absolutely. Thus, we can extend ζ using the definition

ζ(s) :=
1

s− 1
+

∞

∑
n=1

∫ n+1

n
(n−s − x−s)dx, s ∈ C \ {1}, Re(s) > 0. (6)

Moreover, ζ is complex analytic in this region, being a uniform limit of com-
plex analytic functions (namely the partial sums) on any compact subset of
{s ∈ C : Re(s) > 0} \ {1}.

1737.

Euler publishes the following amazing result, now known as the Euler product
formula: for s ∈ C such that Re(s) > 1,

ζ(s) = ∏
p prime

1
1− p−s .

His method is remarkably simple, and is an example of a sieve.

2This is from Noam Elkies’ notes, found at http://www.math.harvard.edu/~elkies/
M259.02/zeta1.pdf.
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Proof. Let s ∈ C be such that Re(s) > 1.

ζ(s) = 1 +
1
2s +

1
3s + . . . . (7)

=⇒ 1
2s ζ(s) =

1
2s +

1
4s +

1
6s + . . . . (8)

(??)− (??) sifts out the multiples of 2:(
1− 1

2s

)
ζ(s) = 1 +

1
3s +

1
5s +

1
7s + . . . . (9)

=⇒ 1
3s

(
1− 1

2s

)
ζ(s) =

1
3s +

1
9s +

1
15s +

1
21s + . . . . (10)

Considering (??)− (??), we have sifted out the multiples of 2 and 3:(
1− 1

3s

)(
1− 1

2s

)
ζ(s) = 1 +

1
5s +

1
7s +

1
11s + . . . .

Continuing in this way, we sift out the multiples of p for each prime p, and
we are left with

ζ(s) ∏
p prime

(1− p−s) = 1 ∴ ζ(s) = ∏
p prime

1
1− p−s .

The Euler product formula shows immediately that there are infinitely many
prime numbers, since the harmonic series ζ(1) diverges. So far we have done
nothing high-powered. A genius scribbled a few things down and worked
out some cool stuff. Little did people know how much the game was going
to change.

1859.

Bernhard Riemann publishes an eight-page paper entitled On the Number of
Primes Less than a Given Magnitude. He establishes the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s), (11)

where Γ is the gamma function.3 Equation (??) extends ζ to C \ {1}, and ζ is
still complex analytic!4 The function ζ is called the Riemann zeta function.

3The gamma function extends the (shifted) factorial function to a function that is complex
analytic over C.

4Geometrically, s 7→ 1− s is a reflection across the line {s ∈ C : Re(s) = 1
2 }.
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It is easy to show that ζ has a simple pole at s = 1, with residue equal to 1.

Proof. It suffices to prove that

lim
s→1+

(s− 1)ζ(s) = 1,

which derives from the fact that, for s ∈ R>1 and k ∈ Z>0,

1
(k + 1)s <

∫ k+1

k

ds
xs <

1
ks .

From equation (??), we see that

ζ(−2n) = 0, n ∈ Z>0.

These are called the trivial zeroes of the Riemann zeta function. Substituting
s = 0 into equation (??) does not yield a zero, since the simple pole of ζ
cancels with the simple zero of the sine function. Similarly, if s ∈ 2Z>0 then
Γ has a simple pole at 1− s.

Riemann also establishes that all nontrivial zeroes of the Riemann zeta func-
tion lie in the region

{s ∈ C : 0 ≤ Re(s) ≤ 1}.

This is easy enough to prove.5

Proof.

• Assume that s ∈ C and Re(s) > 1. We prove that ζ(s) 6= 0 by proving
that log ζ(s) converges.

Using the Euler product formula, and using the expansion

log(1− x) = −
∞

∑
n=1

xn

n
,

5This is taken from Carl Erickson’s notes, found at
http://www.math.harvard.edu/~erickson/pdfs/primes_and_riemann.pdf.
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we compute:

log ζ(s) = − ∑
p prime

log(1− p−s) = ∑
p prime

∞

∑
m=1

1
mpms

= ∑
p prime

1
ps + ∑

p prime

∞

∑
m=2

1
mpms ,

which converges absolutely.

Now that we know that there are no zeroes with real part greater than 1, the
functional equation (??) tells us that there are no nontrivial zeroes with real
part less than 0. Thus, all nontrivial zeroes lie in the region

{s ∈ C : 0 ≤ Re(s) ≤ 1}.

In this paper, Riemann writes that the following is “probably true”:

Conjecture (Riemann hypothesis). Let s ∈ C \ {1} be a nontrivial zero of ζ.
Then Re(s) = 1

2 .

Motivated by the Riemann hypothesis, the critical line is{
s ∈ C : Re(s) =

1
2

}
.

As you might guess from the title of the paper, Riemann was trying to under-
stand something quite specific, namely the distribution of primes. Already in
1859, Riemann was able to provide a formula pinpointing the exact locations
of primes, contingent on knowing the zeroes of the Riemann zeta function!

Riemann gives the formula

Π0(x) =
(

li(x)− ln 2 +
∫ ∞

x

dt
t(t2 − 1)

ln t
)
−∑

ρ

li(xρ), (12)
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where the summation is over nontrivial zeroes ρ of the Riemann zeta function,
summing in increasing order of |Im(ρ)|, since the series is only conditionally
convergent.6 The function Π0 can recover the prime-counting function

π(x) := #{primes ≤ x},

and the function li is the logarithmic integral function, extended to C. The
formula has a part which we can understand, and an ‘error’ term which is
controlled by the nontrivial zeroes of the Riemann zeta function.

1896.

Jacques Hadamard and Charles Jean de la Vallée-Poussin prove indepen-
dently that the Riemann zeta function has no zeroes with real part equal
to 1. Since we’es established that there are no zeroes with real part greater
than one, the functional equation (??) implies that all nontrivial zeroes of the
Riemann zeta function lie in the critical strip,

{s ∈ C : 0 < Re(s) < 1}.

This was a crucial step in the first proofs of the prime number theorem, pro-
vided by Hadamard and de la Vallée-Poussin.

1900.

David Hilbert presents ten problems at the International Congress of Mathe-
maticians, in Paris, later publishing the remaining thirteen on his list. Hilbert
predicts that these problems will be highly influential in 20th century math-
ematics.

His incredible foresight makes the release of these problems one of the great-
est moments in the history of mathematics. His eighth problem, the Riemann
hypothesis, is one of the few that to this day have not been at least partially
resolved.

2000.

The Clay Mathematics Institute copies Hilbert’s idea, making a list of seven
of the most important problems in mathematics, and offering a prize of one
million dollars each. The Riemann hypothesis is the only problem to appear
both on the Clay Math list and on Hilbert’s list from 100 years earlier, and is
widely regarded as the most important problem in mathematics.

6Pairing ρ with ρ̄ shows that the summation is real.
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“If I were to awaken after having slept for a thousand years,
my first question would be: has the Riemann hypothesis been
proven?”

— David Hilbert

Empirical evidence

It is known that the first 1.5 trillion zeroes lie on the critical line!7 How, you
might ask?8

Note that s ∈ C \ {1} is a zero of the Riemann zeta function if any only if s̄
is, since ζ(s) = ζ(s̄). Thus, we need only study zeroes in the ‘top half’ of the
critical strip. Suppose we want to check up to height T, i.e. study zeroes in
the region

X := {s ∈ C : 0 < Re(s) < 1, 0 ≤ Im(s) ≤ T}.

First define the function Z, which has simple poles at 0 and 1 but is complex
analytic on C \ {0, 1}, by

Z(s) = π−s/2Γ
( s

2

)
ζ(s). (13)

The function Z is much ‘nicer’ than the Riemann zeta function, for the fol-
lowing reasons:

• The zeroes of Z are precisely the nontrivial zeroes of ζ, since Γ has a
simple pole at each point in Z<0.

• The functional equation (??) becomes9

Z(s) = Z(1− s),

which implies that Z is real-valued on the critical line. This allows us
to relate the zeroes on the critical line to sign changes.

Now we can just count!

7http://www.claymath.org/millennium/Riemann_Hypothesis
8Thanks to Keith Conrad for his post on mathoverflow.
9Use the ‘reflection’ and ‘duplication’ identities for the gamma function.
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1. Use the argument principle from complex analysis to compute x, the
number of zeroes in X (with multiplicity). Specifically, let γ = ∂X,
oriented anti-clockwise, and define an entire (complex analytic on C)
function f by

f (s) = s(1− s)Z(s), s ∈ C

Then f and Z have the same zeroes (recall that Z has poles at 0 and 1),
so10

x =
1

2πi

∫
γ

f ′(s)
f (s)

ds. (14)

This is easy enough to derive, given Cauchy’s residue theorem. Let
zN ∈ X be a zero, and let k be its multiplicity. Then there exists a com-
plex analytic function g such that g(zN) 6= 0 and, in a neighbourhood
of zN ,

f (z) = (z− zN)
kg(z),

so
f ′(z)
f (z)

=
k

z− zN
+

g′(z)
g(z)

,

which has residue equal to k. The sum of the residues is therefore x, so
equation (??) follows from Cauchy’s residue theorem.

2. Use a computer (but be careful) to compute y, the number of sign-
changes of the function

[0, T]→ R

t 7→ Z
(1

2
+ it

)
.

Let n be the number of zeroes in X that lie on the critical line (with multiplic-
ity). Then

x ≥ n ≥ y. (15)

Thus, if we find that x = y, then every zero in X lies on the critical line.
Hence, using computers, we can use this method to check up to any arbitrary
height, given some time. It will not work if we hit a multiple zero on the
critical line (in which case n > y), but this has not happened yet: they have
all been simple zeroes so far.

10There need to be no zeroes or poles of f on γ. Technically, we need to choose the height
T such that ζ has no zeroes with imaginary part equal to T. The integral is easy to compute
numerically, since it has to be an integer multiple of 2π. As an aside, note that the argument
principle generalizes to meromorphic functions.
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Applications and generalizations

The Riemann hypothesis would provide further information about the distri-
bution of primes. For x ≥ 2, the offset logarithmic integral function is

Li(x) :=
∫ x

2

1
ln t

dt = li(x)− li(2).

The prime number theorem says that π(x) is approximated by x
ln(x) , or equiva-

lently by Li(x). Specifically,

lim
x→∞

π(x)
Li(x)

= 1.

The question is, “how large is the error?" In 1976, Lowell Schoenfeld proved
that the Riemann hypothesis is equivalent to

|π(x)− Li(x)| < 1
8π

√
x ln(x), x ≥ 2657. (16)

The Riemann hypothesis also provides upper bounds on the growth rate
of certain arithmetic functions, such as the Mertens function (related to the
Möbius function) and the sum-of-divisors function,

σ(n) = ∑
d|n

d.

So what’s better than the Riemann hypothesis? The generalized Riemann
hypothesis! The Riemann zeta function can be generalized to Dirichlet
L-functions, and the generalized Riemann hypothesis is essentially the L-
function version of the Riemann hypothesis. Some consequences of the gen-
eralized Riemann hypothesis:

1. The Miller-Rabin primality test is guaranteed to run in polynomial time.

2. The Shanks-Tonelli algorithm (for finding square roots of a quadratic
residue modulo an odd prime) is guaranteed to run in polynomial time.

3. Goldbach’s weak conjecture: any odd number greater than 5 can be
written as the sum of three (not necessarily distinct) primes.
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4. Let p be prime, and let gp be the smallest primitive root modulo p
(with nonzero elements modulo p considered as integers in the range
1, 2, . . . , p− 1). Then

gp = O(ln(p)6). (17)

5. (Artin’s conjecture on primitive roots) Let a ∈ Z \ {−1} be a non-
square. Then there exist infinitely many primes p such that a is a prim-
itive root modulo p.

The verdict?

Some of you may remember that the last two Clay-Mahler lecturers briefly
addressed the Riemann hypothesis in public lectures at the University of
Melbourne, though it was not the subject of their lectures. In 2009, Terence
Tao opined that it would not be proven by 2050, while in 2011 Peter Sarnak
assured us that the hypothesis was certainly true.

Sure, the first 1.5 trillion zeroes may lie on the critical line, but maybe some-
thing goes wrong when the imaginary part gets really big! From a theoretical
perspective, we can look at whether or not analogues of the Riemann hypoth-
esis are true. Most famously, Pierre Deligne (1974) proved an analogue of the
Riemann hypothesis for projective varieties over finite fields (one of the Weil
conjectures). Some zeta functions satisfy a version of the Riemann hypothe-
sis, while others apparently do not. The Riemann zeta function shares certain
properties with the ones that do, which is some evidence in favour of the
Riemann hypothesis.

Recent survey articles by Sarnak (2008), Conrey (2003) and Bombieri (2000)
provide moderate evidence in favour of the hypothesis, while Ivić (2008) pro-
vides some reasons to remain skeptical. Solutions may be submitted to the
MUMS room.

— Sam Chow

Any respectable mathematician about to speak at a confer-
ence announces their talk as Proof of the Riemann Hypothesis.
Then when the conference actually takes place, they speak
about something completely different. It’s a standard precau-
tion, just in case they die on the way to the conference. . .
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Paradox Problems

Below are some puzzles and problems for which cash prizes are awarded.
Anyone who submits a clear and elegant solution may claim the indicated
amount. Anyone who is able to do so for all seven questions will be awarded
a $50 voucher from the Melbourne University Bookshop!

Either email your solutions to the Editor (paradox.editor@gmail.com) or drop
a hard copy into the MUMS room (G24) in the Richard Berry Building; please
include your name.

1. ($2) Evaluate
(

1− 1
22

)(
1− 1

32

)(
1− 1

42

)
. . .
(

1− 1
20122

)
.

2. ($3) A tromino is an L-shaped tile made of three connected unit squares.
how many ways are there of tiling a 3× n chessboard with trominoes
where n is a positive integer? (Every square must be covered and over-
laps are forbidden).

3. ($3) Let ABC be a triangle with ∠ABC = 80◦ and ∠BAC = 40◦. Let S
and T be points on segments AB and AC respectively with ∠BCS = 20◦

and BT = SA. Find ∠STA.
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4. ($3) Let ABC be a triangle with area 1 and let K, L, M, N be the mid-
points of AB, AC, KB, LC respectively. Find the area of the triangle
formed by lines KC, LB and MN.

5. ($4) There are 33 knights on a chess board. Prove that one of the knights
is attacking at least two other knights.

6. ($4) What is the smallest positive integer n such that n - 22222

− 2222
?

7. ($5) 2n people sit around a table with k chocolates distributed among
them. A person may give a chocolate to their neighbour, but only after
first eating one themselves. Nominating a head of the table, what is the
minimum k such that, irrespective of the initial distribution of the lollies,
there is a way for the head to get a chocolate? What is the minimum k
such that everyone can get a chocolate?

— Andrew Elvey-Price

Paradox would like to thank Sam Chow, Andrew Elvey-Price,
Dougal Davis, Andrew Kwok, Timothy Lee, Lu Li, and Jinghan
Xia for their contributions to this issue.


