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Words from the Editor

Welcome to the first edition of Paradox for 2007. As you know, Paradox is the
magazine of MUMS, and has existed in its present form for more than 20 years.
MUMS is the Melbourne University Mathematics and Statistics Society, which
is at least 70 years old. (Mathematics is the study of patterns in everything,
and is as old as humanity. That’s why you should read this magazine.)

MUMS and Paradox are dedicated to promote interest in maths outside the
university coursework. That’s why we are having the insomnia-inducing,
potentially-cash-earning, Google-powered Puzzle Hunt (see our article for de-
tails). There are, as usual, jokes, stories, and problems with cash prizes in this
issue. We also have an article explaining how to solve a problem (the Dinitz
conjecture) that was open for a long time, hence demystifying mathematical
research for those interested.

But remember, Paradox is a magazine written by the students. So if you have
any ideas, be them articles on your area of interest, jokes, problems, or just
want to get published in a magazine that’s being read in no less than 5 unis in
Australia (and more overseas), then feel free to send an email to me.

— James Wan

About the cover:
The Norwegian stamps honour Niels Henrik Abel (1802 –
1829). The design is based on his statue in Oslo, which is
believed to be the only instance where a mathematician is de-
picted in the nude. In the statue, he is also seen standing on
two vanquished men, who are thought to be the Elliptic func-
tion and the Quintic equation.

Words from the President

Welcome to a new year of MUMS, a year of many things; of shoes and ships
and sealing wax, of cabbages and kings. Of course, those particular things
aren’t likely to be administered by MUMS, but we will do our best to organise
a fun semester or two for you all.
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Coming very soon is the premier event of the MUMS calendar, the Puzzle
Hunt, which will be held in the week of 26 – 30 March. For those that haven’t
entered before, Puzzle Hunt is a week-long puzzle-solving competition you
can do from the comfort of your living room. You can find out more or register
a team at http://www.ms.unimelb.edu.au/∼mums/puzzlehunt.

While you’re outside your living room though, we’ll be continuing to run our
almost-weekly seminars on all sorts of weird and entertaining topics not likely
to be seen in lectures. These seminars don’t require any mathematical back-
ground beyond approximately Year 10 and come with their own refreshments,
and are a great place to meet like-minded people.

We’ll also be holding our Annual General Meeting some time in the next
month or two, so please come along to vote for your favourite fellow maths
students, or run for election yourself! Finally, as always, we will finish the
semester off with our biannual trivia night, and come back next semester with,
among other things, our world-famous Maths Olympics.

— James Zhao

How to Win a Puzzle Hunt!

For those among you wondering, what on earth is a “Puzzle Hunt”, it’s an
annual event run by MUMS which involves a set of puzzles released daily for
five days. (Each puzzle has a story and a question, which you may not notice
upon first reading). The puzzles are lateral thinking problems that require
ingenuity, insight, and occasionally sheer luck to solve. At the end of the week,
a meta-puzzle is released. Combining the answers for all the previous puzzles
in a certain way, you should then be able to make the mad dash for the hidden
item on campus and win the $200 first prize.

Now that introductions are done, it’s time to get into the real meat of this
article: How to solve puzzles. The first and most important step in solving a
puzzle is to think logically. Most puzzles will have multiple steps, however
each step should follow logically from the previous one. We’re not saying that
it will be obvious what the steps will be, but once you have your moment of
“Zen” and see what to do, it should immediately make sense.

Another key component in being able to solve a puzzle is for your team to
have excellent communication, so the idea pool is as full as possible and no
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one is out of the loop. In 2005, a puzzle titled Christmas was fairly obviously
a sudoku, except it used the alphabet with 25 5×5 squares. Very early on,
one of our team members (Ray) had worked out that in the story, people were
singing “The First No-el”. He then knew that the letter L was the one that was
left out of the sudoku. However, this information was not passed onto the rest
of the team until two days later, and 2 points were thrown away.

Google is everyone’s best friend. When given a lot of nonsense, or sentences
that look vaguely familiar, just putting words into Google will provide the first
step.

Looking for patterns is also always a good place to start too. If you see a pat-
tern that consistent throughout the whole puzzle, it’s almost certainly going
to be involved somehow.

Lastly, comb the story text and look at the title for thinly veiled hints. Almost
every puzzle will have small hints written into the story, and the title is always
in some way related to the puzzle. Hints in the story are often fairly easy to
pick up, as they seem to slightly disrupt the flow or just stick out like sore
thumbs. More often than not, you’ll find that searching the text for the little
clues and highlighting them provides the inspiration to work out the next step.

So it’s easy for us to just write up some hints and tips, but putting these to
practice is easier said than done. So now you’ll see some guides and solutions
on some of our favourite puzzles from previous years.

2005 5.5 Defenestration – by James Zhao

At first look, like many of James Zhao’s puzzles (which are widely known as
being “evil”), it’s not obvious at all where to start. The trick to this puzzle
is to look for patterns. If you look carefully, you’ll notice that no number is
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repeated. As an extension of that, you’ve got a 7×7 grid, and the numbers 1
through to 49. Now we’re on to something! Surely each number must be used
once.

This should sound familiar to most people. With enough team members, at
least one of them should realize that it is a magic square, where each column
and row must add up to the same sum. A quick check with the supplied
numbers will confirm this.

Where to next? Well, logically, completing the magic square must surely be
it. But that looks tricky. However, with some more cogitation, you’ll notice
that numbers opposite each other from the centre of the square have the same
sum, as you’ll find with many magic squares. Now it isn’t all that hard to fill
out the rest of the square.

Surely you must be done by now! Well, no. This is an evil puzzle after all.
You’ve got these letters with matching numbers. You know somehow that you
need to work the letters into the puzzle. What’s a logical thing to do? Order
the letters in the order of the corresponding order of numbers of course!

Now you’ve got this funny looking string XTHEODOREJKNOTTX. Looking
into that, you can see Theodore J Knott. Problem is, who the hell is that? This
is when trusty Google comes into play. Google Theodore J Knott and a page
off the MUMS website appears first. Theodore J Knott is none other than the
legendary superhero of the magazine you’re reading right now: Knot Man.

2005 1.4 Division – by James Zhao (again!)

The title seems to suggest that we will require some sort of calculations. Hah,
too easy, you may say while expanding out all the brackets. But do not proceed
too hastily. Upon close observations, you can see that there are just too many
variables for you to do a simple “division”. So what should you do? While
staring down at these two letter combinations, you begin to notice something.
You’ve seen them, but where?
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Read the hints in the text. “Arts Centre”, “Old Geology” and “Chemistry
Building” catch your eye. Chemistry you say? Bingo! The letters represent
chemical elements. You grab your best friend Google and print out the pe-
riodic table. Lots of elements. . . what should you do with them? You start
off by ticking off the ones you have found in the puzzle, but then you notice
something. The elements seem to spell out something:

D A N T E

Wow, you’ve got it! You have finally solved your first Puzzle Hunt puzzle!
You go to the puzzle hunt home page and type in your answer, a mere admin-
istrative process to confirm your greatness.

“You walk into the food factory and find ten thousand kittens crying.”

You fall into a sense of shock and disbelief. You were wrong! How could it be?
The answer may lie in the bunch of dots under DANTE that you conveniently
forgot about.

L V V I

What could this mean? You are convinced that these represent the letters LV
VI. Roman numerals? You look up the Roman numerals and indeed the letter
L is one of them. 55 and 6, you tell yourself. 55 and 6 of what? Anyway, who
is this Dante guy?

Have no fear, Google is here, or so he says. After reading website after website
of material regarding Dante, and after many attempts at taking the 6th word
of the 55th sentence, your morale starts to decline. More and more kittens are
found crying. How many more food factories are there left, you wonder. It’s
1am and everyone is asleep. Your only comfort is the fact that no other teams
have solved this puzzle.

One last website, you tell yourself as you open “Dante’s Inferno Test”. It seems
like a little test to show where you would go in the afterlife. The results are
in and “You are sent to the First Level of Hell - Limbo”. First level?1 Hmm,
you think to yourself. Level one, Lv 1. In this moment of “Zen”, you quickly
browse the site for other levels of hell, in particular, the 6th. The city of Dis.
DIS! It must be it. In this case it was pure luck that we ran upon this site, but
hey, clever people make their own luck!

1Good for you. Your favourite editor only managed the fifth level.
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Well, now that you’re all puzzle solving experts, there should be no reason
why you wouldn’t enter the next puzzle hunt, which starts on Monday the
26th of March and ends on the 30th of March. Use our masterful hints, throw
in a healthy dose of luck, and you could soon be $200 richer! For more infor-
mation, including registering your own team and full versions of all the puz-
zles in previous hunts, go to www.ms.unimelb.edu.au/∼mums/puzzlehunt.

— Han Liang Gan and Ray Komatsu

Colouring the Masses: The Dinitz Conjecture

1 Introduction

One (formerly) popular problem in graph colouring is the Dinitz conjecture.
The Dinitz conjecture, now a theorem, was a problem that left mathematicians
confounded for about 15 years. Before going any further, it is always best to
illustrate the problem by relating it to a real-life, albeit hypothetical, moment.
Suppose in a tutorial for (insert the subject code of any maths subject you like),
there are 16 students. All the students in the tutorial are seated in a square grid
with 4 students on each row and each column. Let’s suppose that each student
is given a list of 4 colours, where each list may or may not be identical and the
studentis told to choose one colour out of the list. Now, the million-dollar (not
literally, since it’s not a Millennium Problem) question is: if we were to repeat
this as many times as possible to different groups of students, is there always
one group that has an arrangement in such that for each row and column,
there exists no duplicate colours?

For the simple case with 16 students you could possibly enumerate all ar-
rangements to find at least one arrangement that satisfies the condition. Of
course, with mathematics, one case is not enough. Will this be true if we have
n2 students with a list of n colours each for every n ≥ 2? If the list of n colours
are identical, this is always true as this case corresponds to a Latin square. An n-
by-n Latin square is a square with n2 cells where given numbers {1, 2, . . . , n},
each row and column must be arranged in such a way that each number exists
in a particular row or column only once. Let’s say in our previous example, all
16 students are given a list of 4 colours each, each one labeled 1 to 4. Then an
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Figure 1: Example of a Latin square

Figure 2: An example with unidentical colour lists

example of a colouring that satisfies the condition is shown in Figure 1. This
also happens to be an example of a 4-by-4 Latin square.

In general, given that if we have a tutorial class of size n2 with each student
being given identical lists of n colours, then it is always possible to find such
a colouring and the solution would be an n-by-n Latin square. Now, if we ex-
tend this to the case when the lists of colours are not necessarily identical, then
it is a different matter altogether. Consider the case in Figure 2 for example. If
we are not careful in our colouring, then it is possible to miss such a solution.
If colours 1 and 2 were chosen for the first row, then there is no solution as
colour 3 is the only option remaining in the second row.

The previous example essentially illustrates the question proposed by Jeff
Dinitz in 1978: while we can clearly see a solution for identical colour lists,
does a solution always exist for unidentical colour lists? Like many difficult
maths problems, the Dinitz conjecture could be stated simply without requir-
ing deep, specialized knowledge (look no further than the infamous Fermat’s
Last Theorem). There were quite a number of mathematicians attacking the
problem but it wasn’t until 1993 that Fred Galvin provided a solution in [3].
Unlike Fermat’s Last Theorem which required a monster of a proof, Galvin’s
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solution was simple and required only about two pages, thereby ensuring that
paper was conserved. In fact, the simplicity of the solution caused a “why
didn’t I think of that?” moment in many mathematicians familiar with the
problem. One such lament published in a journal is [2].

In the rest of the article, we shall examine Galvin’s ingenious proof of the
Dinitz conjecture. More surprisingly, not much knowledge is assumed besides
basic understanding of proofs by induction, basic algebra and basic graph the-
ory.

2 Taking a Closer Look

When faced with a mathematical problem, the most important step before one
attempts it is to find the right model that simplifies the visualization of the
problem. The model must be able to capture the intricacies of the problem
and more importantly, it determines the entire approach of the solution. In
other words, when you’ve got a good plan, things are more likely to work
out. It’s just like planning a trip to the Maldives for example: the first step
is to select a mode of transport to determine how you’re going to get to your
destination. In our case, the destination is a complete solution of the problem.
Evidently, the mode of transport is also important as one could possibly take a
(water-proof) car to the Maldives but get there with a much longer travel time
than say, an aircraft. So it is the same with proofs: some methods yield the
same results with a more elegant argument.

In the case of the Dinitz conjecture, the problem would be best represented us-
ing graphs. First, we start off with some notations that will be used; hopefully,
the reader doesn’t groan at the sight of these notations. A standard notation
for a graph is given by G = (V,E) where V represents the set of vertices and
E represents the set of edges in a graph G. For a vertex v ∈ V the degree d(v)
is the number of edges connected to (or incident to) the vertex.

A directed graph ~G = (V,E) is a graph where every edge e ∈ E has an ori-
entation. Figure 3 shows an undirected graph and an example of its directed
counterpart. We denote the edge e = (u, v) to mean the direction is going
u → v in a directed graph. To account for the directions, we would require
the concept of an indegree d−(v) and an outdegree d+(v). The indegree specifies
the number of incident edges directed towards the vertex v and the outde-
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Figure 3: Example of an undirected and a directed graph

gree specifies just the opposite. Additionally, the total sum of the indegree
and the outdegree of a vertex v must be the degree of the vertex itself, thus
d−(v) + d+(v) = d(v). Note that for every undirected graph, there are 2|E|

directed graphs since there are two possible directions for every edge in an
undirected graph. A subgraph GA is a graph made up of vertices of set A ⊆ V
and contains all edges of G between the vertices of A. An induced subgraph H
of G is a subgraph induced by some vertex set A and H = GA if the induced
subgraph is GA.

In our case, we can model the problem in terms of a grid-like graph that is
shown in Figure 3. The undirected graph on the left in Figure 3, for example,
would model a class of 9 students. The edges between the vertices in the graph
would correspond to the relationship between the vertices in the graph. Let’s
generalize this and denote such a graph of n2 vertices as Sn. The graph in
Figure 3 would then be S3. Each vertex belonging to graph Sn would clearly
have a degree of 2n − 2, since the vertex has an edge to the other vertices on
its own row and column.

3 The First Piece of the Puzzle

The crux of the entire proof actually hinges on the following lemma:

Lemma 3.1 Let ~G = (V,E) be a directed graph and suppose that for each vertex
v ∈ V we have a colour set C(v) that is larger than the outdegree, |C(v)| ≥ d+(v)+1.
If every subgraph ~G possesses a kernel then there exists a list colouring of G with a
colour from C(v) for each v.
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Figure 4: Example graph to illustrate kernels

Lemma 3.1 can be proven using induction but the proof is omitted here. Essen-
tially, if you could somehow orient the graph Sn into a directed graph so that
each vertex now has an outdegree of n − 1 then we can show that the graph
requires exactly n colours by the lemma and we are done. Note that this can
be done since the vertices in the undirected graph Sn have a degree of exactly
2n − 2, so a natural choice would be to set both the indegree and outdegree
of the directed graph ~Sn to n − 1. But first, what is a kernel? Basically in a
directed graph, the kernel K is a subset of vertices such that the following two
conditions are satisfied:

• the set K is independent in the graph;

• for all other vertices u in the graph that do not belong to K, there is a
vertex v belonging to K such that there exists the edge u → v.

Let’s look at the example in Figure 4. Here we find that the set {b, c, f} satisfies
the conditions and hence is a kernel. On the other hand, the set {a, c, e} is not
a kernel because edges exists between the vertices in the set and they form a
cycle.

Now, suppose an orientation for the graph Sn is found. The next step would
be to prove that any induced subgraph of the new oriented version ~Sn has
a kernel. Clearly, we can see that if this condition holds then we can apply
Lemma 3.1 to put the Dinitz conjecture to rest.
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Figure 5: Example of a bipartite graph with a matching

4 Is Your Marriage Stable?

In order to prove that any induced subgraph in graph Sn has a kernel, we
first would have to take a little detour. A bipartite graph is a graph such that
the vertices can be split to two distinct sets X and Y where edges only exist
between vertices in X and Y but not within each set itself. More formally, the
graph G = (X ∪ Y,E) can be coloured with precisely two colours. Figure 5
shows an example of a bipartite graph.

A matching M in graph G would be the set of edges in set M such that no two
edges share the same end-vertex. The bold lines in Figure 5 would constitute
one possible matching. So, what does matching have to do with stable mar-
riages? Consider the following problem. Suppose you were to run your own
match-making agency, where marriages are of the heterosexual kind. Let X
be the set of men and Y be the set of women. A matching in this case would
be equivalent to an edge uv ∈ E for any u ∈ X and v ∈ Y ; and since we
want to ensure that no bigamy is committed, the matching condition holds.
Furthermore, consider that every man and woman have their preferences of
the ideal mate. Each man has a list of women with the candidates on his list
ranked from highest to lowest. The women also have their own respective lists
of preferred male candidates.

Let’s call the ranking of the set of vertices adjacent to vertex v ∈ X ∪ Y as
N(v). There is a list of rankings for every vertex in the bipartite graph G and
we have N(v) = {z1 > z2 > . . . > zd(v)} where z1 is the top choice and so on.
With these, we introduce the notion of a stable marriage. A marriage is stable
if the following condition holds: for every man u ∈ X and woman v ∈ Y ,
provided both u and v are matched to a partner, u is not married to a woman
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Figure 6: Example of a matchings given by the lines. The stable matching is
given by the bold lines. The rankings are given by the sets next to each vertex.

v′ ∈ Y when he prefers v and v is not married to another man u′ ∈ X when
she prefers u. The match uv is called a blocking pair, and if this edge is not
present in a given matching, it would lead to an unstable matching. Figure 6
provides an illustration of a matching. While there is a unique matching M
with four edges given by the set {aC, bB, cD, dA}, unfortunately M is not a
stable matching. Here, cA constitutes a blocking pair.

The stable matching problem was solved by Gale and Shapley in 1962. A gen-
eralized version of the problem was solved much earlier in 1952 and was used
for medical residents’ matchings. Gale and Shapley provided an algorithm
that can be applied to the stable matching problem, subsequently known as
the (no prizes for guessing) Gale-Shapley algorithm. The algorithm proceeds
in a few rounds and basically goes like this:

• In the first round, each man proposes to the woman he prefers most,
regardless of whether she had been proposed to by another man.

• From the proposals received, each woman selects the proposer she prefers
most, rejecting all other proposals. Women who do not receive any pro-
posals in this round do nothing.

• Now, in the second round, each man already engaged, that is if their pro-
posal from the previous round was accepted, do nothing. The men who
were rejected previously make a proposal to the next highest woman on
their respective lists.

• Women who are not engaged would then select the man highest in their
respective rankings and women who did not receive any proposals do
nothing.
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• The rounds continue. Any man whose last proposal is rejected (ouch!) is
then dropped from consideration (double ouch!). The algorithm contin-
ues until either all men have been matched or dropped from considera-
tion.

The algorithm will terminate because eventually either each man in the set will
be matched or dropped from consideration. Furthermore, the important thing
about the Gale-Shapley algorithm is that the algorithm will always produce
a stable matching. Looking at the steps in the algorithm again, it is clear that
each man is always guaranteed that his present mate will always be better than
any other mate lower in ranking to the present one. Since this is precisely the
stable marriage condition, any solution produced is guaranteed to be stable.

If we run the algorithm on the example in Figure 6, then we will have M =
{aC, bD, cA} and d is the rejected male and B remains unmarried. This match-
ing is given by the bold lines. Note that it is not possible to match d to B be-
cause both has not considered each other, guaranteeing their singlehood after
this episode. However, everyone else lives happily ever after as their mar-
riages are guaranteed to be stable, at least according to the algorithm.

5 From Marriages to Colouring

Now that we have all the pieces, let’s put the puzzle together. First, we denote
the vertices of the graph Sn with (i, j), 1 ≤ i, j ≤ n. A vertex (i, j) is adjacent to
vertex (r, s) if and only if i = r or j = s. For any Latin square L with numbers
{1, 2, . . . , n}we denote the entry in cell (i, j) as L(i, j). As suggested in Section
3, we then convert graph Sn into a directed graph ~Sn. The orientation is done
in such a way that

• for horizontal edges, if L(i, j) < L(i, j′) then set the edge as (i, j) →
(i, j′),

• for vertical edges, if L(i, j) > L(i′, j) then set the edge as (i, j) → (i′, j).

Basically, we orient smaller numbers to larger ones horizontally and we do the
opposite vertically. Figure 7 shows an example for a 3-by-3 Latin square and
the corresponding graph ~S3. Observe that once this orientation is done, the
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Figure 7: A 3-by-3 Latin square and its corresponding orientation

Figure 8: An example set of A and the corresponding bipartite graph

outdegree of each vertex (i, j) is d+(v) = n− 1. To see this, consider if we take
a random cell L(i, j) = k, then we find that are exactly n − k cells in row i
that contain an entry larger than k while k − 1 cells in column j have an entry
smaller than k. The sum of these would then be equal to the outdegree of each
vertex.

Since we have established the fact that we can orient the graph such that each
vertex (i, j) has an outdegree of n − 1, it remains to be shown that every
induced subgraph of ~Sn possesses a kernel (recall that this is a condition in
Lemma 3.1). Let’s consider a subset A ⊆ V where V is the set of vertices in the
graph ~Sn. We can construct a bipartite graph G = (X ∪ Y, A) such that X is
the set of rows and Y is the set of columns in the corresponding Latin square.
For every (i, j) ∈ A, we would then represent it as an edge ij in the bipartite
graph G with i ∈ X and j ∈ Y . Figure 8 illustrates an example with the set
A = {(1, 1), (1, 3), (2, 2), (3, 4), (4, 1), (4, 2), (4, 3)}. The cells of A are shaded in
the Latin square next to the bipartite graph.

Due to the orientation of Sn, a natural ranking is induced on the neighbour-
hoods in graph G. Observe that this orientation sets j′ > j in N(i) if (i, j) →
(i, j′) in ~Sn and i′ < i in N(j) if (i, j) → (i′, j). (Try working out the rankings
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in Figure 8.) Thus, given such a ranking, the graph G would have a stable
matching M which is a subset of A. M is in fact the kernel we were looking
for, since it is independent in A as none of its vertices shares a common end-
vertex. Furthermore, if we pick a vertex (i, j) ∈ A\M , then as M is a stable
matching, either there exists (i, j′) ∈ M with j′ > j or (i′, j) ∈ M with i′ > i,
which in ~Sn would be (i, j) → (i, j′) ∈ M or (i, j) → (i′, j) ∈ M , thus proving
that M is a kernel. By Lemma 3.1, since any subgraph induced in ~Sn has a
kernel, then as long as our colour set is at least of size d+(v) + 1 = n, we can
always find a colouring for the graph Sn. Hence, the proof is complete.

6 Wrapping Up

When looking at the proof of the Dinitz conjecture, one can’t help but marvel
at the simplicity of the proof. The entire proof only requires two concepts,
that of Lemma 3.1 and of stable marriages. Sometimes, seemingly difficult
problems can be broken down to easier constituent parts, with insight putting
them all together. More importantly, it shows that one needs to have a balance
between specialized and general mathematical knowledge. This proof of the
Dinitz conjecture is beyond doubt a thing of beauty to those who behold it. So
get a pencil and paper and start working on a problem now! Who knows, you
might be fortunate enough to prove an interesting open problem.

— Paul Tune
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Maths jokes

How professors prove it

Proof by example: Give the n = 2 case. The other 255 cases are analogous.

Proof by deferral: “We’ll prove this later in the course”. “Trivial.”

Proof by vigorous hand waving: Works well in a classroom or seminar setting.
Cloud-shaped drawings frequently help here.

Proof by cumbersome notation: Use lots of P, p, ρ, %, . . . without any hint of
their meanings.

Proof by reference to inaccessible literature: Cite a simple corollary of a lemma
found in a privately circulated memoir of the Icelandic Mathematical Society,
1876.

Proof by importance: A large number of useful consequences follow from the
proposition.

Proof by evidence: Long and diligent search has not revealed a counter exam-
ple.

Proof by mutual reference: In reference A, Theorem 5 is said to follow from
Lemma 3.1.4 in reference B, which is shown to follow from Corollary 6(e) in
reference C, which is an easy consequence of Theorem 5 in reference A.

?

To a mathematician, real life is a special case.

?

Denis Diderot was a French encyclopedist and philosopher. He once stopped
at the Russian court in St Petersburg. His wit and charm soon drew a large
following among the nobles – and so did his atheist philosophy. That worried
empress Catherine very much.

Leonhard Euler, a devout Christian, was working at the Russian court at that
time. It is said2 as that the empress asked him for help in dealing with the
threat posed by Diderot.

2This story is most likely false, given that Diderot was actually a capable mathematician.
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Euler was introduced to Diderot as a man who had found an algebraic proof
for the existence of God. With a stern face and serious tone, the mathematician
confronted the philosopher: “Monsieur, (a + bn)/n = x, therefore God exists.
Any answer to that?”

Diderot was dumbstruck. He was laughed at by his followers, and soon re-
turned to France.

?

When the logician’s little son refused to eat his vegetables for dinner, the father
threatened him: “If you don’t eat your vegies, you won’t get any ice-cream!”
The son, frightened at the prospect of not having his favorite dessert, quickly
finished his vegetables.

After dinner, impressed that his son had eaten all his vegetables, the father
sent his son to bed without any ice-cream.

?

A father who is concerned about his son’s bad grades in maths decides to
register him at a Catholic school. After his first term there, the son brings
home his report card: he’s getting full marks in maths.

The father is pleased, but wants to know: “Why are your math grades sud-
denly so good?”

The son explains: “When I walked into the classroom the first day, and I saw
that guy on the wall nailed to a plus sign, I knew this place means business!”

?

A mathematician, an engineer, and a computer scientist are riding in a car,
when suddenly the engine stops working.

The mathematician: “We came past a gas station 3.42 minutes ago. Someone
should go back and ask for help.”

The engineer: “I should have a look at the engine. Perhaps I can fix it.”

The computer scientist: “Why don’t we just open the doors, slam them shut,
and see if everything works again?”
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True stories

It used to bother John Littlewood (1885–1977) a good deal that he seemed to
dream at night of solutions to the problems he was working on, but could
never remember the details in the morning. He resolved to address this: he
put a notebook and pencil by his bedside. That night, he had a particularly
lucid dream in which all the pieces of the solution of his problem were plainly
laid out and explained. He forced himself to wake up and wrote down all his
thoughts, then he went blissfully back to sleep. In the morning, he was excited
to read what he had recorded, confident that he would now be able to write
an important paper. What he read on his notebook was, “Higamus, bigamus,
men are polygamous. Hogamus, bogamous, wives are monogamous.”

R H Bing (1914–1986) was a topologist at the University of Texas. Many people
thought he preferred his initials to his first and middle names. Bing in fact
did not have a first and middle name. His full name, as recorded on his birth
certificate, was R H Bing. One year Bing applied for a visa. He filled out the
application form. The form was returned to him, and he was told that the State
Department would not accept initials. Bing wrote back, explaining patiently
that his name was “ ‘R only’ ‘H only’ Bing.” In a few weeks he received his
visa in the mail. It was made out to “Ronly Honly Bing.”

A popular story about Edward Titchmarsh (1899–1963) is that he once an-
nounced a course that would be a “double series” of lectures — lasting not
one academic year but two. The first half of this marathon course ended in
April, and there was a six month break before the next half began. Titchmarsh
strode into the room that day, picked up a piece of chalk, and said, “Hence,
. . . .”

Historical Quotations about Prime Numbers

Below is a chronological collection of imaginary thoughts and sayings (the
real part is their names) from some selected famous people regarding their
opinion about the series of the prime numbers. Each thought was devised
trying to reflect their particular way of reasoning, or at least, by the way we
remember their lasting works.

1. (b.470 B.C.) Socrates: “3 is prime, 5 is prime, 7 is prime, 9 is. . . sorry, this
leads me to the discovery that I only know that I know nothing.”
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2. (b.384 B.C.) Aristotle: “1 is not prime, by definition. 2 is an unnatural
prime, 4 is an unnatural prime, and 6 is an unnatural prime. All other
natural primes cannot be unnatural primes.”

3. (b.780) Mohammad ibn al-Khwarizmi: “3 is prime, 5 is prime, 7 is prime. . . 9
is not prime, but don’t tell it to the infidels.”

4. (b.1225) Thomas Aquinas: “3 is prime, 5 is prime, 7 is prime and 9 is
prime. God can do anything.”

5. (b.1285) William of Occam: “3 is a prime, 5 is a prime, and 7 is a prime.
Why bother with non-prime numbers when the primes can do every-
thing?

6. (b.1451) Christopher Columbus: “3 is prime, 5 is prime, 7 is prime. Ac-
cording to some ancient manuscripts 9 is not a prime number, but in the
New World that I am going to discover, there are surely lots of them.”

7. (b.1532) Menoccio Scandella3: “In the beginning there was a chaos, and
out of the chaos came the primes: 1, 2, 3. Out of these numbers came the
composites like the holes in a fermented cheese.”

8. (b.1548) Giordano Bruno: “I don’t care if 1 is prime or not, if 2 is prime
or not, if 3 is prime or not. All I care is that there are more stars in the
heavens than primes in the earth.”

9. (b.1564) Galileo Galilei: “I, Galileo, son of the late Vincenzio Galilei,
swear that I never said that the prime numbers are useless. What I said
was that you cannot count lunar craters by counting 2, 3, 5, 7, . . . ”

10. (b.1732) George Washington: “What’s the difference between prime num-
bers and composite numbers? There are no real differences, remember:
E pluribus unum.4”

11. (b.1809) Abraham Lincoln: “3 is a prime, 5 is a prime, 7 is a prime and
9 should be a prime. But keep in mind that you can fool all the primes
some of the time, and some of the primes all of the time, but you cannot
fool all of the primes all of the time.”

3His view of God and angels appearing from chaos likes “worms from cheese” got him into
trouble with the Inquisition, which lead to his death in 1600.

4From many, one.
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12. (b.1818) Karl Marx: “2 is a proletariat prime, but 4, 6 and 8 are also com-
posite proletariats. Composites of the world unite; you have nothing to
loose but your chains!”

13. (b.1834) Dimitri Mendeleev: “3 is a prime, 5 is a prime, and 7 is a prime,
but 9 is a noble prime that deserves a separate row in the periodic table
of the primes.”

14. (b.1845) George Cantor: “ℵ3 is a transfinite prime,ℵ5 and ℵ7 are also
transfinite primes; however, it is my conjecture that ℵ9 is the first trans-
finite composite between ℵ7 and ℵ11. Keep in mind that any normal
number contains all the digits of all the primes.”

15. (b.1869) Mahatma Gandhi: “3 is prime, 5 is prime, 7 is prime, but 9 is not
prime; in this incarnation.”

16. (b.1872) Bertrand Russell: “3 is prime, 5 is prime, 7 is prime, 9 is a para-
dox.”

17. (b.1881) Pablo Picasso: “1 is a prime, 2 is a prime, 3 is a prime, 4 is a
prime. . . Give me a museum and I’ll fill it!”

18. (b.1887) Erwin Schrödinger: “3 is a prime, 5 is a prime, and 7 is a prime,
however, 9 has a dual prime-composite state that can collapse to one side
or the other depending on the observer’s cat.”

19. (b.1917) John F. Kennedy: “1 is not a prime number and 9 is not a prime
number? Then ask not what the primes can do for you, ask what you
can do for the primes.”

20. (b.1918) Billy Graham: “3 is prime, 5 is prime, 7 is prime, 9 is an unfor-
tunate mistake of the devil. But if it repents, it will be saved!”

21. (b.1929) Martin Luther King: “What? You say that 2 is the only even
prime number? I have a dream that one day this number will rise up
and live out the true meaning of its creed. We hold these truths to be self
evident that all numbers are created equal.”

22. (b.1946) George W. Bush: “3 is prime, 5 is prime, 7 is prime, and 9. . . well,
any odd number can be prime as long as it is not 9.”

— Ernesto Pérez Acevedo (Puerto Rico)
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Inequalities

I’m starting to like inequalities already. No, not the socio-economic kind of
inequalities, this is about the real stuff you don’t often learn at uni.

All of you would know basic inequalities – we see such comparisons every
day, whether it be comparing prices, or thinking about whether it’s time to
wash those plates because there aren’t enough clean ones for your dinner. But
inequalities aren’t just about that; with it we can compare very complex alge-
braic expressions and getting very interesting results indeed.

The usual high-school inequality has a single variable: something along the
lines of 2x−1 > 13. The pinnacle of high-school inequalities, at present, seems
to be something like f(x) > k, whereupon out comes the graphing equipment
and the answer can thus be read off.

A common fallacy is that while you can add and multiply inequalities (pro-
vided they go the same way), the same does not go for subtraction and divi-
sion. 3 > 2 and 4 > 1 does not mean that 3 − 4 > 2 − 1. This is because, as
3 > 2 means 3 = 2 + a, a > 0 and 4 > 1 means 4 = 1 + b, b > 0, we really know
nothing about a− b.

Now, how would we prove stuff like, for all real numbers a, b and c, a2 + b2 +
c2 ≥ ab + bc + ca?

Well, squares are non-negative.

Realising that the inequality is equally expressed as a2−ab+b2−bc+c2−ca ≥ 0,
we can proceed to express the left hand side as a sum of squares:

a2 − ab + b2 − bc + c2 − ca ≥ 0
2a2 − 2ab + 2b2 − 2bc + 2c2 − 2ca ≥ 0

(a2 − 2ab + b2) + (b2 − 2bc + c2) + (c2 − 2ca + a2) ≥ 0
(a− b)2 + (b− c)2 + (c− a)2 ≥ 0

Such an argument can be used to solve many inequalities involving real vari-
ables. Take, for example, prove for all real t, that: t4 − t + 1

2 > 0.
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Of course we could use calculus, but note that the left hand side is t4 − t2 +
1
4 + t2 − t + 1

4 = (t2 − 1
2 )2 + (t− 1

2 )2 > 0.

But why is the inequality >, not≥? Well, consider the equality case, (t2− 1
2 )2 =

0 and (t− 1
2 )2 > 0. This gives t = 1

2 and t =
√

1
2 , a contradiction.

Other inequalities are solved quite differently.

Suppose you were a lucky contestant at a game show, and you had won a
prize. Three bins sit before you, one containing $10 notes, one containing $20
notes, and the third containing $100 notes. You are allowed to choose 100 notes
from one bin, 10 from another, and 1 from the last. How would you choose
your notes?

The greedy contestant would, quite obviously, choose 100 $100 notes, 10 $20
notes, and 1 $10 note, making a total of $10210. The game show producers,
on the other hand, would much rather you chose 100 $10 notes, 10 $20 notes,
and 1 $100 note, reducing your winnings to $1300. But how do they know that
such arrangements are the greatest and least amounts the contestant could
take?

Enter the rearrangement inequality. It states that:

If a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn, then a1b1 + a2b2 + · · · + anbn ≥
a1bi + a2bj + · · ·+ anbk ≥ a1bn + a2bn−1 + · · ·+ anb1, where the middle is any
permutation of the sequence {bi}.

Intuitively this is true, and we can prove this more rigorously by thinking
about swapping the order of pairs of products: if w ≥ x and y ≥ z, then
wy + xz ≥ wz + xy.

In true uni style, this is left as an exercise for the reader (hint: turn inequalities
into equalities with variables).

Once such a result is obtained, we can ‘swap partners’ between pairs aibl+akbj

to aibj + akbl (i > k, j > l), all the time increasing our total, until we get the
left hand inequality. The right hand inequality is similarly done.

Well, apart from game shows, how is this inequality useful in mathematics?
Let’s look at our original inequality: prove that a2 + b2 + c2 ≥ ab + bc + ca.
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Without loss of generality, let a ≥ b ≥ c. Let {a, b, c} be our first and second
sequence. Then the rearrangement inequality gives the result straight away, as
a2+b2+c2 is the largest obtainable total, while ab+bc+ca a mere permutation
of the second sequence.

Surely, however, we can do something with the powers in the expression?
Note the square in the terms in the LHS that is not apparent in the RHS?

Enter Muirhead’s inequality.

Firstly the terminology. Sequence A majorises sequence B (of the same number
of real elements) if, when organised in non-increasing order, the respective
cumulative sums in Sequence A are greater than or equal to the respective
cumulative sums in Sequence B; further the total sum of the sequences are
equal.

For example, {9, 6, 5.5,−4.5} majorises {5, 5, 4, 2} since

9 ≥ 5
9 + 6 ≥ 5 + 5

9 + 6 + 5.5 ≥ 5 + 5 + 4
9 + 6 + 5.5− 4.5 = 5 + 5 + 4 + 2

Muirhead’s inequality tells us that, if sequence {a1, a2, . . . , an} majorises se-
quence {b1, b2, . . . , bn}, then for any real xi,∑

sym

xa1
1 xa2

2 · · ·xan
n ≥

∑
sym

xb1
1 xb2

2 · · ·xbn
n ,

where
∑

sym means the symmetric sum, that is, taking all possible permuta-
tions of xi in the sum.

In particular, if we let x1 = a, x2 = b, x3 = c, and note that {2, 0, 0} majorises
{1, 1, 0}, then ∑

sym

a2b0c0 ≥
∑
sym

a1b1c0

⇒ 2a2 + 2b2 + 2c2 ≥ 2ab + 2bc + 2ca.

There is a factor of 2 on each side because we are adding 3! = 6 permutations
of a, b, and c.
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Of course, the versatility of Muirhead’s inequality doesn’t stop at simple in-
equalities. For a challenge, try the following:

(1996 Iranian Maths Olympiad) For all positive real numbers x, y, and z, prove
that:5

(xy + yz + xz)(
1

(x + y)2
+

1
(y + z)2

+
1

(x + z)2
) ≥ 9

4

(hint: expand and simplify.)

Another way to utilise the squares in the left hand side of our original inequal-
ity is to consider the Arithmetic Mean-Geometric Mean (AM-GM) inequality.
It states that if x1, x2, . . . , xn > 0, then 1

n (x1 + x2 + · · ·+ xn) ≥ n
√

x1x2 · · ·xn.

Now if we set x1 = a2, x2 = b2, and x3 = c2, then we see that

a2 + b2

2
≥
√

a2b2 = ab,
b2 + c2

2
≥
√

b2c2 = bc,
c2 + a2

2
≥
√

c2a2 = ca.

Adding them together yields our familiar inequality.

Of course, the AM-GM inequality is much more versatile than this. E.g. try to
prove that, for positive a and b, a+nb

2 ≥ n+1
√

abn, or that, for positive a, b, and

c, a+b+c
3 ≥

√
ab+bc+ca

3 ≥ 3
√

abc.

The Geometric Mean and the Arithmetic Mean all come from a long line of
Means denoted the “Power Means”:

In a set of numbers {xi}, the Mean of power p is of the form:

Mp({xi}) = p

√
xp

1 + xp
2 + · · ·+ xp

n

n
,

where M0 is defined to be the Geometric Mean.

Theorem: If p ≥ q, then Mp ≥ Mq for the same sequence {xi} in the positive
reals.

5Without Muirhead’s inequality, this is somtimes considered the hardest inequality problem
ever to appear in a high school level competition. You can claim $5 from MUMS for solving it.
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This is useful whenever dealing with powers, or finding a bigger mean than
the person next to you.

Consider that M2 ≥ M1 for {a, b, c},
√

a2+b2+c2

3 ≥ a+b+c
3 , squaring both sides

and rearranging gives a2 + b2 + c2 ≥ ab + bc + ca, which looks altogether very
familiar.6

Now try these:

• For positive reals a, b, c and d, prove that:

4(a3 + b3 + c3 + d3)2 ≥ (2ab + c2 + d2)(2ac + b2 + d2)(2ad + b2 + c2)

• If ai are positive reals which add up to 1, prove that
a)

∑n
i=1

1
ai
≥ n2 (hint: use M−1 and M1).

b)
∑n

i=1
ai

1−ai
≥ n

n−1 .

Many of you may know about the Cauchy-Schwarz-(Buniakowski) inequality:

(x2
1 + x2

2 + · · ·+ x2
n)(y2

1 + y2
2 + · · ·+ y2

n) ≥ (x1y1 + x2y2 + · · ·+ xnyn)2.

Proof: let (x1, x2, . . . , xn) be vector ~x and (y1, y2, . . . , yn) be vector ~y, then |x|2|y|2 ≥
|x|2|y|2 cos2 θ = |x · y|2. Now we just expand it out.

How is this useful? Let x1 = a, x2 = b, x3 = c, y1 = b, y2 = c, y3 = a, then

(a2 + b2 + c2)2 ≥ (ab + bc + ca)2,

and taking the square root of this (non-negative) expression yields our old
result.

For more uses of Cauchy-Schwarz, try these:

• If reals a, b, c, d are such that a2 + b2 + c2 + d2 = 100, show that
1
a2

+
4
b2

+
9
c2

+
16
d2

≥ 1

(hint: multiply one side by a2 + b2 + c2 + d2 and the other side by 100.)
6The RHS only hold for positive reals by the theorem, but one can easily see that this extends

to all reals.
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• (IMO 2005) Let x, y, z be positive real numbers such that xyz = 1. Prove
the inequality

x5 − x2

x5 + y2 + z2
+

y5 − y2

y5 + z2 + x2
+

z5 − z2

z5 + x2 + y2
≥ 0

(hint: this is hard, and you may need to use Cauchy-Schwarz several
times, as well as a few other inequalities.)

• Prove, for a, b, c > 0,

a

b + 2c
+

b

c + 2a
+

c

a + 2b
≥ 1.

Of course, many of these inequalities are quite high-powered and rarely would
one expect to use them in daily life (or even at uni). However, there is still a
chance that you may one day find yourself calling upon any one of these while
at the shops, making bets about averages, or deciding the largest amount of
money you can win from a game show.

Or, if nothing else, you can be quite sure that for real numbers a, b and c,
a2 + b2 + c2 ≥ ab + bc + ca.

— Matthew Ng

In the above figure, the squares a and b actually have the same
colour.
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Solutions to Problems from Last Edition

1. P is polynomial with positive coefficients. Prove that if P (x)P ( 1
x ) ≥ k2

for x = 1, then this property holds for all x > 0

Solution: Let P (x) be a2
0+a2

1x+. . .+a2
nxn. Then, when x > 0, P (x)P ( 1

x ) =
(a2

0 + a2
1x + . . . + a2

nxn)(a2
0 + a2

1
1
x + . . . + a2

n
1

xn ) ≥ (a2
0 + a2

1 + . . . + a2
n)2 =

P (1)2 ≥ k2 by the Cauchy-Schwarz inequality.

2. a) Prove sin x
x =

∏∞
k=1 cos x

2k and b) find the value of
∑∞

k=1 arctan 1
2k2 .

Solution: a)

cos
x

2
cos

x

4
. . . cos

x

2n
sin

x

2
sin

x

4
. . . sin

x

2n
=

1
2n

sinx sin
x

2
. . . sin

x

2n−1
.

After cancellations,
∏∞

k=1 cos x
2k = limn→∞

sin x
2n sin x

2n
. Evaluating the limit

gives the result.

b) Note that arctan 1
2k2 = arctan(2k + 1) − arctan(2k − 1), so the sum

telescopes (when you write it out explicitly, things cancel), giving the
answer π

4 .

3. For a biased coin with probability p of landing on H on any toss:

• Even if you don’t know p, how can you use the coin to achieve fair
results with probability 1

2?

• What is the probability of getting an even number of H in n tosses?

• What is the expected value of tosses needed to get 2 successive H?

• What is the expected value of tosses needed to get 2 successive H
or T?

Solution: a) toss the coins twice until the results differ; then use the first
one. This is because HT and TH are equally likely.

b) Let Pn be the probability after n throws. Then

Pn = (1− p)Pn−1 + p(1− Pn−1) = (1− 2p)Pn−1 + p, P0 = 1.

Solving the recurrence gives Pn = 1
2 ((1− 2p)n + 1).

c) We use conditional expectations: E = 1 + (1− p)E + p(1 + (1− p)E).
The 1 is for the first toss, the second term for restarting the experiment if
a T is encountered, and the last term for the 1 more toss if H shows up,
or restarting the experiment if T shows up. This gives E = 1+p

p2 .
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d) Combining the expectataions for H and T using the previous method,
one can show that E = 2+p−p2

1−p+p2 .

4. A point is distance a, b and c away from the vertices of an equilateral
triangle, where a2 + b2 = c2. What is the side length of the triangle?
Solution: there are 2 cases: the point P can be inside or outside the
triangle. Rotate the whole figure centred at a vertex, say B, by 60◦ so
A′ = C, and we observe that 4BPP ′ is equilateral, and 4APP ′ is right
by Pythagoras. The side length can then be found by using the cosine
rule on the triangle with the 150◦ angle. The answer is

√
c2 ±

√
3ab.

5. Consider 2 adjacent faces, F1 and F2, of a regular dodecahedron. B is
one of the vertices at which they meet, A is the vertex closest to B on F1

but not on F2, and C is one of the vertices on F2 furthest away from A.
Find the size of ∠ABC.
Solution: choose a vertex V of the dodecahedron; three faces meet there:
F1, F3 and F5. The three faces next closest to V are F2, F4 and F6; let F2

share edges with F1 and F3, etc. Then ABC forms three vertices of a
hexagon which is completed by identical triangles similarly defined on
the other two pairs of faces. Then by rotational symmetry (with centre
at V ), all angles of the hexagon are the same, so ∠ABC = 120◦.

Paradox Problems

Sadly, there were very few submissions to last issue’s problems, and even
worse, as most of them were made by people affiliated with MUMS, they are
not eligible for the cash prizes.

So please note, the increased prize amount for the questions is not due to their
extra difficulty, but because MUMS got a new source of funding. Also, bear in
mind that anyone who submits a clear and elegant solution many each claim
the indicated amount. Either email the solution to the editor (see inside front
cover for address) or drop a hard copy into the MUMS room in the Richard
Berry Building.

Question 1 was solved correctly by Ruth Luscombe, who can now collect $3
from the MUMS room.

Anton Troynikov correctly solved part 1 of question 3, and he can collect $2
from the MUMS room.
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1. ($3) Lucy usually takes the train and arrives at the station 8:30 am, where
she is immediately picked up by a car and driven to work.

One day she takes the early train, arrives at the station at 7:00 am, and
begins to walk towards work. The car picks her up along the way and
she gets to work 10 minutes earlier than usual. When did Lucy meet the
car on this day?

2. ($3) P is a polynomial of any degree with non-negative integer coef-
ficients. You are asked to determine P by only asking for P (x) at 2 x
values. How do you do it?

3. ($5) In 4ABC, the bisector of external ∠A meets BC at D. Find the
length of AD.

4. ($5) Express in closed form cos x− 1
2 cos 2x + 1

3 cos 3x− · · ·

5. ($7) Find the volume of the square antiprism (a solid formed by 2 parallel
square faces, one of which is rotated by 45◦ with respect to the other
around the axis through their centres, and the vertices then joined up
with equilateral triangles) with side length 1.

6. ($10) Find ∏
all primes p

p2 + 1
p2 − 1

.

The 2 lines in fact have the same length.

Paradox would like to thank Paul Tune, Matthew Ng, Ernesto
Pérez Acevedo, Han Liang Gan, Ray Komatsu, Alisa Sedghi-
far, Joanna Cheng and Michael Bertolacci for their contribu-
tions to this issue.
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