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From the Editor

Students of mathematics and statistics, perusers of journals and papers, initi-
ates to the wonders of Euclidean geometry, friends and allies of mathematics in
all its forms, from the wise and learned to the young and moderately curious,
welcome to the latest edition of Paradox! In this volume you will discover the
secret to creating attractive fractals like the one on our front cover, hone your
combinatorial skills, and come tantalisingly close to discovering the identity
of the newest mathematical superhero of the department, Captain Continuous
(our previous superhero, Knot Man, had to resign after being caught deriving
while drunk – he claimed to have derived the Axiom of Choice!). You will
find out what the hell Mersenne primes are and how they are linked to perfect
numbers, learn how to make witty conversation about that perennial topic of
dinner-party conversation, the chromatic number of the plane, and receive a
timely reminder of the axioms of that sadly neglected practice of mathematical
etiquette and political correctness.

And remember, you phantasms of mathematical spirit hidden deep within the
heart of the fresh-faced first year student, the writing of Paradox articles is not
only for Russian professors and people with large eyebrows, it is for you too! We
rely on submissions from people all over the department, including students.
Four of the articles in this edition were written by first-time Paradox authors.
So if you have an idea for an article based on a cool problem that you have
seen or invented, or something you have read somewhere, email me! We’d love
to have you on board.

— Nick Sheridan, Paradox Editor

n.sheridan@ugrad.unimelb.edu.au

Suppose a mathematician parks his car, locks it with his key and
walks away. After walking about 50 metres the mathematician
realizes that he has dropped his key somewhere along the way.
What does he do? If he is an applied mathematician he walks
back to the car along the path he has previously travelled looking
for his key. If he is a pure mathematician he walks to the other
end of the parking lot where there is better light and looks for his
key there.
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Words from the President

The MUMS veterans among you will know that the second semester is tradi-
tionally much busier than the first, and this year that is still the case. We
will be running our regular seminars as usual, as well as both of the Maths
Olympics. . . but wait, there’s more! We have two completely new events in the
works!!

The first will be a social lunch that we like to call “Meet the Boss”, where you
will have the opportunity to meet Hyam Rubinstein (the Head of the Maths
& Stats Department) and a few other professors, on social terms. This is a
great opportunity to meet the people who make it all happen, without having
to worry that they’ll be asking you why your assignment is still a week late.

The other newbie on the calendar is “Maths Week” — a collection of events
that celebrate the beauty and intrigue of mathematics, all packed into a mere
five days. You will be able to witness mathematics in artwork, find out about
research in the Department, and participate in the finale of the week: the
University Maths Olympics! There have even been rumours of a maths-style
Scav-Hunt-like competition...

To add to the party atmosphere, we have decided to print some more of our
very popular MUMS T-Shirts. In fact, they were so popular last time that they
sold out. However, they’ll soon be back. . . and not a moment too soon, with
the Department about to bring out their own range of T-shirts. Pretty soon,
we will have crazy maths fashion in every corridor!

— Damjan Vukcevic

MUMS T-Shirts For Sale!
Many sizes available. Only $10!

Ask at the MUMS room.

Q: Why do Computer Scientists get Halloween and Christmas
mixed up?
A: Because Oct. 31 = Dec. 25.
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About the Front Cover

Have another look at the front cover. “Phwoaar!” you might say, or perhaps,
“Humph! I have seen a fractal before.” But this fractal1 has been constructed
in a very peculiar way. Let us suppose, for the sake of argument, that some
bored group of people took it into their heads to take an enormous piece of
paper, and to fold it exactly in half. Finding this not to have relieved their
boredom, they fold it in half again, in the same direction as before, and again,
and again, and again . . . Finally, when they have folded it an infinite number
of times, they hand it to you. You start to unfold it, but you always unfold it
so that, where originally there was a fold, there is now only a 90◦ fold. The
first few steps are shown below, from side-on. The black bit represents the
shape from the previous step, and the grey bit is the bit that has just been
folded out.

The arrows are, in an air-stewardesque, obfuscatory sort of way, meant to
show the direction the paper has just been folded. Already, the vague outline
of the final picture is beginning to take shape. The final product can, of
course, be seen on the front cover. The image on the front cover was produced
in ‘Paint’ – I just used copy, paste and rotate 90◦ lots of times! An interesting
fact about these shapes is that they tessellate – in fact, you can tessellate the
whole plane with them!

— Nick Sheridan

1A fractal (vaguely) is a shape that repeats itself over and over again.
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Proof by ... Combinatorics?

Sick of the standard recipe for induction? Confused by the logic used in proof by
contradiction? Then you may want to consider using a combinatorial proof the
next time you’re solving a problem. While proof by contradiction and induction
are certainly the two most common and widely applicable methods of proof,
they can be quite fiddly and messy at times. In contrast, combinatorial proofs
often provide more elegant solutions to the same problems.

“So what is a combinatorial proof?”, you’re probably asking at this stage. Well,
the distinguishing feature in such a proof involves finding a physical interpreta-
tion to the result being proven. Usually you are given an algebraic expression
and you want to interpret this as the number of different arrangements or com-
binations of some objects that satisfy particular conditions. Another common
aspect of combinatorial proofs involves counting things in two different ways.
As such, they’re mostly used in proving mathematical identities.

Probably the best way to understand the power of combinatorial proofs is to
go through a few examples. What follows is hopefully a selection of interesting
results (each one named after a famous mathematician) which have constructive
combinatorial proofs.

Pascal and Committees

Pascal’s Formula is a well known result related to Pascal’s triangle. While it
can be proven algebraically, it is the classic example of using combinatorial
proofs.

Pascal’s Formula If n and k are positive integers such that n > k , then(
n
k

)
=

(
n − 1

k

)
+

(
n − 1
k − 1

)
where

(
n
k

)
= n!

k!(n−k)! .
1

Proof: Suppose Paul is a member of the Maths and Stats Society, which has
n members. The society is conducting its annual general meeting and needs

1
(n

k

)
is defined to be the number of ways of choosing k objects from n different objects

(where the order of the k objects does not matter). It can be shown that
(n

k

)
= n!

k!(n−k)!
,

where n! = n× (n− 1)× . . .× 2× 1. In this article, it is not important to know this formula
as long as you understand what

(n
k

)
stands for.
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to elect a committee of k people from its n members. The question is how
many different committees can be formed. This number can be counted in two
different ways.

First way: Since k people need to be chosen from a group of n people, there
are

(
n
k

)
ways of forming the committee (this is the left hand side of the result

to be proven).

Second way: Since Paul is a member, he may or may not be in the committee.
If he is in the committee, then k − 1 other people still need to be chosen from
the remaining n − 1 members. There are

(
n−1
k−1

)
such committees. Otherwise

Paul isn’t in the committee, in which case the k committee people need to be
chosen from the n − 1 other members. There are

(
n−1

k

)
such committees. So

overall there are
(
n−1
k−1

)
+

(
n−1

k

)
committees (the right hand side of the result).

Since both ways count the number of k-person committees chosen from n peo-
ple, it follows that

(
n
k

)
=

(
n−1

k

)
+

(
n−1
k−1

)
, as required.

Fermat and Necklaces

Fermat’s Little Theorem is a well-known result in number theory. The standard
proofs of this result use induction or modular arithmetic and it is somewhat
surprising that a combinatorial proof exists for this theorem.

Fermat’s Little Theorem If p is a prime number and n is any positive
integer, then

np − n is divisible by p

Proof: Suppose you want to make necklaces from exactly p beads. The beads
come in n different colours and there are at least p beads of each colour.

To form these necklaces, you start by making strings of beads. There are n
choices of colour for the first bead, n choices for the second bead, . . . , n choices
for the pth bead. So there are n× n× . . .× n︸ ︷︷ ︸

p

= np different strings of beads.

Since the beads come in n different colours, exactly n of these strings will have
beads all of the same colour. After removing these n strings, you have np − n
strings left, each containing beads of at least two different colours.

You then join the ends of these remaining strings together to form necklaces,
as shown below. Consider two necklaces the same if, visually, you can rotate
one of the necklaces clockwise or anticlockwise to obtain the other. Otherwise,
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consider the necklaces as different.

Since each necklace has p beads, there are p different ways to cut a necklace
in exactly one place. So you can obtain p (possibly different) strings of beads
by cutting one necklace in different places. In fact, each of these p strings
must be different. Suppose otherwise. Then you would be able to rotate the
original necklace clockwise (or anticlockwise) by some number of beads x and
obtain the original necklace again. Choose x to be the smallest such number of
beads needed to rotate the necklace before obtaining the same necklace again.
By the same argument as above, you can rotate the necklace clockwise again
by x beads and get the same necklace. Continuing this argument, it follows
that x must divide p as there are p beads. Since p is prime, then x = 1 or
x = p. If x = 1, then each bead of the necklace must be the same colour. This
is not possible since each necklace has beads of at least two different colours.
Otherwise x = p, but in this case, each of the p strings will be different, by
the definition of x. It follows that each distinct necklace can be formed from p
different strings.

So out of the np−n necklaces, there will be p of each different type of necklace.
Then there are exactly np−n

p distinct necklaces. Because of this combinatorial
interpretation, it follows that np−n

p must be an integer. So np − n is divisible
by p, as required.
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Fibonacci and Carriages

The sequence 1, 1, 2, 3, 5, 8. . . is known as the Fibonacci sequence, where each
term (from the third onwards) is the sum of the two preceding terms. The
following is an interesting formula for the Fibonacci numbers and a very nice
combinatorial proof exists for this identity.

A Fibonacci Identity If the Fibonacci sequence is defined by F0 = 1, F1 = 2
and Fn+2 = Fn+1 + Fn for all positive integers n, then for all non negative
integers n,

Fn =
(

n + 1
0

)
+

(
n

1

)
+

(
n− 1

2

)
+ . . . =

bn+1
2 c∑

k=0

(
n + 1− k

k

)

where bxc is the greatest integer less than or equal to x.

Proof: A train has n carriages, each being a passenger carriage or a meal
carriage (you get to choose). Each passenger carriage is identical to every
other passenger carriage and the same applies for meal carriages. The question
is how many ways can you couple the carriages in a row (behind the train
engine) so that no two meal carriages are next to each other.

First way of counting: Let Fn be the number of ways of arranging the n car-
riages in a row so that no two meal carriages are next to each other. We prove
{Fn} is the Fibonacci sequence.

There are Fn+2 ways of arranging (n+2) carriages so that no two meal carriages
are next to each other. Of the (n + 2) carriages, the front carriage is either
a passenger carriage or a meal carriage. If the front carriage is a passenger
carriage: then the remaining (n +1) carriages are also arranged so that no two
meal carriages are next to each other. There are Fn+1 such ways of arranging
these (n + 1) carriages. Otherwise the front carriage is a meal carriage: since
no two meal carriages may be next to each other, the second carriage must be a
passenger carriage. The remaining n carriages are arranged once again so that
no two meal carriages are next to each other. There are Fn such arrangements.
It follows that Fn+2 = Fn+1 + Fn.

Clearly F0 = 1 since there is only one way of arranging zero carriages. F1 = 2
since you can either have one passenger carriage or one meal carriage. Since
Fn+2 = Fn+1 + Fn, then it follows that {Fn} is the Fibonacci sequence 1, 2, 3,
5, 8. . . .
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Second way of counting: Consider the following simpler problem first. Suppose
the train has exactly y passenger carriages and z meal carriages. The question
is how many ways can the carriages be arranged so that no two meal carriages
may be next to each other.

Representing each of the y passenger carriages by a P, we write down an m
between each P.

m P m P m P m P m . . . m P m P m P m P m︸ ︷︷ ︸
y P ′s

Since there are y passenger carriages P, there are y + 1 positions marked by an
m. The z meal carriages can be chosen as any of the y + 1 positions marked
by an m. Any such placement ensures that no two meal carriages are next to
each other. So there are

(
y+1

z

)
ways of coupling the carriages together so that

no two meal carriages are next to each other.

Note that if y + 1 < z, then
(
y+1

z

)
= 0, by definition. This makes sense since,

in this case, the carriages cannot be arranged so that no two meal carriages are
next to each other.

Now back to the main problem. If the train has exactly n carriages, there can
be

n passenger carriages and 0 meal carriages
OR n− 1 passenger carriages and 1 meal carriage
OR n− 2 passenger carriages and 2 meal carriages

...

If there are n passenger carriages and 0 meal carriages, then there are
(
n+1

0

)
ways of arranging the carriages so that no two meal carriages are next to each
other (using the above result). If there are n−1 passenger carriages and 1 meal
carriage, there are

(
n
1

)
ways. Continuing this in a similar manner, in total, there

are (
n + 1

0

)
+

(
n

1

)
+

(
n− 1

2

)
+ . . . =

bn+1
2 c∑

k=0

(
n + 1− k

k

)
ways of arranging the carriages so that no two meal carriages are next to each
other. The terms in the sum,

(
n+1−k

k

)
, eventually satisfy n+1−k < k, in which

case
(
n+1−k

k

)
= 0. k = bn+1

2 c is the largest value of k satisfying n + 1− k ≥ k,
so that the last non-zero term in the sum Σ is

(
n+1−k

k

)
, where k = bn+1

2 c.
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Comparing both ways of counting the number of arrangements of n passenger
and meal carriages in a row where no two meal carriages are next to each other,
it follows that

Fn =
(

n + 1
0

)
+

(
n

1

)
+

(
n− 1

2

)
+ . . . =

bn+1
2 c∑

k=0

(
n + 1− k

k

)
as required.

Problems to try for yourself

Hopefully the above proofs will have inspired you to attempt your own combi-
natorial proofs:

• For each positive integer n, prove that
(
n
0

)
+

(
n
1

)
+ . . . +

(
n

n−1

)
+

(
n
n

)
= 2n

• If n, r and k are positive integers such that n ≥ r ≥ k, prove that
(
n
r

)(
r
k

)
=(

n
k

)(
n−k
r−k

)
• For each positive integer n, prove that

n∑
k=0

(
n

k

)(
n

n− k

)
=

(
2n

n

)

• For each positive integer n, prove that

n∑
k=0

(
n

k

)
k2 = n(n + 1)2n−2

This is an amazing identity which you can derive from a combinatorial proof:

• For each positive integer n, prove that

n! = nn−
(

n

1

)
(n−1)n+

(
n

2

)
(n−2)n−

(
n

3

)
(n−3)n+. . .+(−1)n−1

(
n

n− 1

)
1n

— Andrew Kwok
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Politically Correct Maths

Considerable effort has been expended in recent times to reform our language
so as to make it less offensive and rid it of deprecatory connotations. However,
mathematics has been left untouched. Below we try to address this deficiency.

1. Do not discriminate between x and y.

y or x = m(x or y) + b

f(x or y) = sin x or y

2. Avoid terms with derogatory connotations.

INCORRECT CORRECT
dummy variable representative variable or generalized variable
negative value nonpositive, nonzero value
discriminant distinguisher
mean expected value or average
irrational not expressible as a terminating or recurring decimal

3. Avoid terms that indirectly deprecate something else.

Do not use the normal distribution. It suggests that other distributions
have something abnormal.

Probability as a whole should be used with care. Assigning one event as
less likely than another borders on discrimination.

Avoid perfect squares for similar reasons. If they must be used, refer to
them as squares of integers.

Perfect numbers were carelessly named by idle mathematicians. The
whole notion of such a number is discarded.

— George Politis

“Mathematics is like checkers in being easy, suitable for the young,
amusing, and without peril to the state.”

— Plato
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The Chromatic Number of the plane

Ever wondered what mathematicians do in their spare time? Play colouring
games of course! So let me describe to you one particular 50-year-old colouring
“game”.

The Rules: Assign a colour to each point in the infinite plane such that any
two points distance 1 apart are a different colour.

The Objective: Find the LEAST number of colours needed to do this.

We call this number the Chromatic Number of R2, and denote it χ(R2). We
also say a colouring of R2 is a Minimal Colouring if, in addition to our rules
above, the number of colours used is χ(R2) (the minimum number required)1.

OK, so perhaps jumping into the R2 case is a bit too sudden. We’ll start with
R0, which is just a single point. Since R0 has only one point, and this point is
distance 0 from itself, we only need 1 colour to colour in R0 according to our
rules. So χ(R0) = 1. YAY!

Now let’s try and find χ(R1). R1 is just the real line, so we need to find a
minimal colouring for the real line. We clearly can’t do it using only 1 colour,
since otherwise the points 0 and 1 would be the same colour, and they are
distance 1 apart (which violates our rules). So 1 < χ(R1). Now what if we
coloured R1 using 2 colours, red and blue, in the following way:

Colour the semi-open interval [0, 1) blue, [1, 2) red, [2, 3) blue, [3, 4) red, and
so on, alternating the colour of each semi-open interval as you go along the
real line in each direction. Clearly, no 2 points in any semi-open interval are
distance 1 apart, and intervals of the same colour are separated by an interval
of length 1. So we have assigned a colour to each point of R1 according to our
rules, and have done so using only 2 colours. So 1 < χ(R1) ≤ 2, ie χ(R1) = 2.

Now, what about χ(R2)? How many colours are needed to colour R2 according
to our rules? Well, clearly we can’t do it with 1 colour. What about 2 colours?
Try colouring the vertices of an equilateral triangle of edge length 1 using only
2 colours (see Figure 1).

There’s no way to do it without violating our rules, so we need more than
2 colours for R2. Now can we colour R2 using 3 colours? Consider the 7

1For those who don’t know, R2 is just the name mathematicians give to two-dimensional
space. They call the real line R1, and three-dimensional space R3.
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Figure 1: An equilateral triangle.

points in R2 arranged as shown in Figure 2. (The points form the vertices of 2
“diamonds”, one of which is slightly tilted. Each edge length is unit distance.
This figure is called the ‘Moser Spindle’). It’s easy to demonstrate that these 7
points cannot be coloured using only 3 colours. So we need more than 3 colours
for R2.

Figure 2: The Moser spindle.
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From what I’ve said so far, you may be thinking that it is impossible to colour
R2 according to our rules. But fortunately, it can be done! Lets see how:
Suppose we divide R2 into squares of edge length 0.6. Now imagine grouping
nine squares together to make a big 3×3 block. Now colour each of these little
squares a different colour, thus using 9 colours in total. We number the colours
from one to nine.

Now imagine we tessellated the infinite plane using these 3 × 3 blocks with
the colouring as given above. Clearly no two points in any small square are a
distance 1 apart, since the diagonal of a small square is 0.6×

√
2 which is less

than 1. Also, the smallest distance between any 2 different squares of the same
colour is twice the width of a square, ie 1.2, which is more than 1. So we have
found a way to colour every point in R2 according to our rules, using 9 colours.
So χ(R2) ≤ 9.

1 2 3 1 2 3 . . .
4 5 6 4 5 6 . . .
7 8 9 7 8 9 . . .
1 2 3 1 2 3 . . .
4 5 6 4 5 6 . . .
7 8 9 7 8 9 . . .
...

...
...

...
...

...
. . .

Figure 3: A colouring of the plane with nine colours.

Can we do any better than 9? We can if we change our “base shape” from
a square (as in the previous example) to a hexagon. Using a “flower” of 7
hexagons of diameter slightly less than 1 (see Figure 4), we can assign one of 7
colours to each of these hexagons, and tessellate R2 with them such that any 2
hexagons of the same colour are separated by a distance greater than 1 (I leave
the geometric proof of this to the ever-vigilant reader). And since the diameter
of any hexagon is less than 1, we have found a colouring of R2 according to our
rules that uses only 7 colours. So χ(R2) ≤ 7.
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Figure 4: A colouring of the plane with seven colours.

To recap, we have shown that:

• χ(R0) = 1

• χ(R1) = 2

• 4 ≤ χ(R2) ≤ 7

Do we know the exact value of χ(R2)? NO! In fact, the bounds on χ(R2) given
above are the best known. Maybe you can find a colouring of R2 that uses
less then 7 colours, or perhaps find a clever way to show that 4 colours isn’t
enough. I spent 8 weeks over summer trying to do just that (with no success).

And don’t think that if you do find R2, that’s the end of the problem. There’s
still χ(R3) (chromatic number of infinite 3-dimensional space), χ(R4), χ(R5)
and so on to be found.

Happy Hunting. — Maurice Chiodo
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Idiot’s guide to Mersenne Primes

Phil: I read this article about the internet quest for the next Mersenne Prime.
Do you know anything about it?

Sophie: Yes and no. Depends on what specifically you wanted to know.

Phil: Well, for starters, what IS a Mersenne Prime?

Sophie: There’s nothing too mystical about them, they’re just numbers which
hold some certain properties. Well, if you are a die-hard mathematician, you
might swear that knowing the key to Mersenne Primes holds the key to the
universe42,

then again. . .maybe not.

Phil: What properties? WAIT! Let me guess, they are PRIME numbers? But
a “different” kind of prime numbers.

Sophie: Quite right. A Mersenne Prime is exactly what the name states. A
Mersenne number is a number which is in the form of Mn = 2n − 1. So there
you have it, a Mersenne prime: a Mersenne number which is prime.

Phil: What’s the big deal? Aren’t “normal” primes “funky” enough?

Sophie: I’m not finished, here is where it starts to get freaky. . . it’s not just
ANY number, it has to follow a certain rule. You see, for a Mersenne Prime to
BE prime, the index has to be prime AS WELL.

I can give you the basic structure of how to prove that. Now if n is composite, I
can write n = pq and thus, Mn = 2pq − 1 and that is a binomial number which
will always have a factor of either (2p − 1) or (2q − 1).

Phil: So, n HAD to be prime? That’s the only way that the number Mn =
2n − 1 is prime.

Sophie: Yupe.

Phil: I still don’t get it, why bother making things more complicated? What
is it with Mersenne Primes anyway?

Sophie: Mersenne Primes hold a very remarkable property. But before we deal
42The number 42 is the key to the Universe. Search Google to find out why!
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with Mersenne Primes, I’d like to tell you a bit about PERFECT NUMBERS.
Have you ever heard of them?

Phil: Perfect numbers? You mean integers? Aren’t all integers perfect?

Integers are whole numbers, which might be described as “perfect”, unlike
rationals which are fractions, or even irrational numbers which are neither
integers nor rationals. RIGHT?

Sophie: Perfect numbers ARE integers, but not all integers are perfect. “Per-
fect” here is a term that describes the “sum-of-factors” property. Quite simply,
if you add up the factors of a number (excluding itself) you will get a number,
and if that number is the same as the original number, then it’s “perfect”.

For example 6 is a perfect number, because 1, 2 and 3 are all factors of 6 and
1 + 2 + 3 = 6. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28,
and the next is 496.

The study of perfect numbers has been around since the time of the early
Egyptians, maybe even as early as the invention of numbers. I suspect it’s got
something to do with people not having anything better to do. Or as we call
it, “satisfying their innate curiosity”. . . whatever that is. . . (or even writing this
article in the first place, or even for the readers who read them).

Phil: OK, I get that, what does it have to do with Mersenne Primes?

Sophie: Everything.

The sole reason people are actually interested in Mersenne Primes is the fact
that each perfect number corresponds to a single Mersenne Prime.

Phil: I’m getting lost now. OK, how?

Sophie: It’s actually not that difficult. Alright, like I said before, a perfect
number is a number which is the sum of its factors excluding the number itself.
Now let’s include the number itself, so we will have twice the original number.
So, we say a number is perfect if twice that number is the sum of all its factors.

6 is perfect because 1 + 2 + 3 + 6 = 12 and 12 = 2× 6.

28 is perfect because 1 + 2 + 4 + 7 + 14 + 28 = 56 and 56 = 2× 28.

In short, P is perfect if the sum of all factors of P is 2P .
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It’s pretty tiring if I have to say “sum of all factors” over and over and over
again. So to make life easier for both of us, we’ll say P is perfect if δ(P ) = 2P
where δ(P ) is the sum of all factors of P .

Phil: I’m digesting. . . So a number is perfect if all its factors sum up to twice
the original number?

Let’s say the number is 15. The factors are 1, 3, 5, 15. If you add them up,
you will get 1 + 3 + 5 + 15 = 24. 24 is NOT 2× 15, thus 15 is NOT a perfect
number. Am I right?

Sophie: Yes you are! Let’s look at δ(), what happens if we apply δ() to a
prime ? Say δ(19) = ?

Phil: The sum of all factors of 19 is 1 + 19 = 20, are you saying that

δ(prime) = prime + 1?

Sophie: Yes, EXACTLY! Now if we apply the function to numbers like 2n,
it will behave like the sum of geometrical series with a lower limit of 1, upper
limit of 2n and a ratio of 2.

So, δ(2n) = 1 + 2 + . . . + 2n

Phil: Let’s see, the formula for sum of geometrical series is Sn = xn+1−1
x−1

δ(2n) = 2n+1−1
2−1 = 2n+1 − 1

Sophie: That’s right! Now before we move on, I’d like to state the one Funda-
mental Theorem which we will use. The Fundamental Theorem of Arithmetic.

Phil: DE JA VU! I’ve heard that before! I swear I have!

Sophie: The Fundamental Theorem of Arithmetic?

Phil: No, not that, that’s YOU CHANGING THE TOPIC YET AGAIN!!
“Before we move on, blah blah blah.” Look at us! Now we’re even further from
our original topic. I get what a Mersenne Prime is, I just don’t get what’s so
freakin’ special about a number.

Sophie: Beats me, don’t shoot the messenger, don’t blame me for explaining.
So do you still want to hear about the Fundamental Theorem of Arithmetic?
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Phil: I still don’t understand where this leads to, but yeah, what the heck.

Sophie: Wow! Such enthusiasm!

So anyway, the Fundamental Theorem of Arithmetic just states that you can
express every natural number n > 1 in a unique way: as a product of prime
factors.

So n = pa1
1 pa2

2 pa3
3 ....par

r where p1, p2, ..., pr are all prime.

I’m just stating that so you can understand the next REMARKABLE property
of δ(). Let’s say it’s applied to a composite number. If we express the composite
number as a product of prime factors, then δ(composite) = product of all
δ(prime factors of that composite). Or, to be more exact,

δ(pa1
1 pa2

2 pa3
3 ....par

r ) = δ(pa1
1 )δ(pa2

2 )δ(pa3
3 )...δ(par

r ),

Phil: I still don’t get what the Fundamental Theorem of Arithmetic has to do
with any of this.

You’re just obscuring things and making things even more complicated than
they already are. You can just say the prime factorization of a composite
number, and that will do. You’re such a pain Sophie, you make me sick! I
don’t even remember why I asked you this in the first place.

Sophie: Well, that’s encouraging.

Anyway, remember the examples of perfect number that I gave you, 6, 28, 496,
. . . Those are all even numbers. Now let’s forget about odd perfect numbers,
for our purpose here they don’t exist, or just consider them to be non-existent.

Say we can write a perfect number in this form P = q · 2p−1 where q is prime.

Let’s look at δ(P )

δ(P ) = δ(q · 2p−1)
= δ(q)δ(2p−1) from the prime factorization property
= (q + 1)(2p − 1) from my previous explanations

and we know if P is to be perfect, then δ(P ) = 2P thus,

δ(P ) = 2P = 2(q(2p−1)) = q(2p)
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Then, we just got the result that

(q + 1)(2p − 1) = q(2p)
q(2p − 1) + (2p − 1) = q(2p)

(2p − 1) = q(2p)− q(2p − 1)
(2p − 1) = q(2p − 2p + 1)
(2p − 1) = q

so q had to be a Mersenne Prime in order for P to be perfect, so can you see
how special a Mersenne Prime is?

Phil: ..........

Sophie: Or let me put it in another way.
Say we have a Mersenne prime Mp, Mp = 2p − 1.
From the result I’ve just shown you,
we can write perfect numbers using this formula:

P = (2p−1)(2p − 1) = (Mp+1)Mp

2

So not only did p have to be prime for Mp = 2p − 1 to be prime, we also see
that each Mersenne Prime corresponds to a perfect number. Or is it the other
way around.

So what is it about the article you read about the internet quest about the
search of Mersenne Prime?

Personally, I think it’s a good idea for the use of “unused resources” for the
advancement of mathematics in general.

Sure, it costs electricity and it causes CO2 emmission, but don’t blame math-
ematicians for it, blame whoever invented an inefficient use of fossil fuels as
a source of energy. Besides, mathematicians aren’t evironmentalists, they
shouldn’t be held responsible for a thing they didn’t do.

What do you think, Phil?
..
Hey Phill... ?
Philllll?

— Fendy Liauw
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Paradox Problems

The following are some maths problems for which prize money is offered. The
person who submits the best (clearest and most elegant) solution to each prob-
lem will be awarded the sum of money indicated beside the problem number.
Solutions may be emailed to

paradox@ms.unimelb.edu.au

or you can drop a hard copy of your solution into the MUMS pigeonhole near
the Maths and Stats Office in the Richard Berry Building. Congratulations to
Jenny Theresia, Chris Cheung, David Gummersall and Jie Meng, who submit-
ted correct solutions to the problems from the last edition.

1. ($5) A group of shepherds have 128 sheep among them. If one of them has
at least half of the sheep, each other shepherd steals as many sheep from
this shepherd as he already has. If two shepherds each have 64 sheep,
one of these two shepherds steals all the sheep from the other. Suppose
seven rounds of theft occur. Prove that one shepherd ends up with all of
the sheep.

2. ($5) A positive integer is written on the board. We repeatedly erase its
unit digit and add 5 times that digit to what remains. Starting with
72004, can we ever end up at 20047?

3. ($5) Duels in the town of Discretion are rarely fatal. When a duel is to be
fought, each contestant arrives at a random moment between 5 a.m. and
6 a.m. on the appointed day and leaves exactly five minutes later, unless
his opponent arrives within that time, in which case they duel. What
fraction of duels end in violence?

4. ($5) A calisson is a French sweet, in the shape of two equilateral triangles
joined edge to edge. Calissons come packed in hexagonal boxes. As you
can see on the next page, they can have any of three orientations in the
box. Show that, regardless of the size of the box or the arrangement of the
calissons, there are the same number of calissons with each orientation.
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5. ($10) A circuit board has 2004 contacts, any two of which are connected
by a lead. The hooligans Vasya and Petya take turns cutting leads: Vasya
(who goes first) always cuts one lead, while Petya cuts either one or three
leads. The first person to cut the last lead from some contact loses. Who
wins with correct play?

In the fall of 1972 President Nixon announced that the rate of
increase of inflation was decreasing. This was the first time a
sitting president used the third derivative to advance his case for
re-election.

An absent-minded professor (alright, it was Norbert Weiner) was
moving. His wife, knowing that Norbert would forget his address,
took out a sheet of paper and wrote it down for him. Later that
day, Norbert had a flash of insight, and, fumbling for a piece of
paper, wrote down his new theorem on the paper his wife gave him.
On further reflection, Norbert found a fallacy in his thinking and
threw out the paper in disgust. When he came home that night,
to the now-empty house he had moved from, he remembered he
had moved, but had no idea where he had moved to. Just then, he
spied a little girl on the street. “Little girl,” he asked, “My name
is Norbert Weiner, do you know where I live now?” “Yes Daddy,”
replied the girl, “Mummy thought you would forget.”
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