Question 1 20 marks

In a pack of hundreds  $\mathcal{E}$  thousands, for every thousand red hundreds  $\mathcal{E}$  thousands, there are a hundred green hundreds  $\mathcal{E}$  thousands. For every thousand green hundreds  $\mathcal{E}$  thousands, there are a hundred blue hundreds  $\mathcal{E}$  thousands. If I have ten thousand thousand red hundreds  $\mathcal{E}$  thousands, how many hundred blue hundreds  $\mathcal{E}$  thousands do I have?

(Hundreds & thousands are sprinkles that go on top of cakes.)

Question 1 20 marks

In a pack of hundreds  $\mathcal{E}$  thousands, for every thousand red hundreds  $\mathcal{E}$  thousands, there are a hundred green hundreds  $\mathcal{E}$  thousands. For every thousand green hundreds  $\mathcal{E}$  thousands, there are a hundred blue hundreds  $\mathcal{E}$  thousands. If I have ten thousand thousand red hundreds  $\mathcal{E}$  thousands, how many hundred blue hundreds  $\mathcal{E}$  thousands do I have?

(Hundreds & thousands are sprinkles that go on top of cakes.)

Question 2 20 marks

A flower is formed by four circles of radius 1 centred at the points (0,1), (1,0), (0,-1) and (-1,0). What is its perimeter?

Question 2 20 marks

A flower is formed by four circles of radius 1 centred at the points (0,1), (1,0), (0,-1) and (-1,0). What is its perimeter?

20 marks

Arrange the following numbers in increasing order:

$$\sqrt[2]{2}$$

$$\sqrt[3]{3}$$

$$\sqrt[2]{2}$$
  $\sqrt[3]{3}$   $\sqrt[5]{5}$ .

Question 3 20 marks

Arrange the following numbers in increasing order:

$$\sqrt[2]{2}$$

$$\sqrt[3]{3}$$

$$\sqrt[3]{3}$$
  $\sqrt[5]{5}$ .

Question 4 20 marks

Kwok and Thara are running in a 100m race. Since Kwok is 50% faster than Thara, he gives him a 4m head start, but still finishes 4 seconds faster. How fast is Kwok in metres per second?

Question 4 20 marks

Kwok and Thara are running in a 100m race. Since Kwok is 50% faster than Thara, he gives him a 4m head start, but still finishes 4 seconds faster. How fast is Kwok in metres per second?

#### CHANGE RUNNER NOW

20 marks

A natural number x is said to be Fibbinary if, in its binary representation, the addition 2x + x has no carries. For example, 7 is not Fibbinary, since the addition

$$\begin{array}{rrr}
7 &=& 111 \\
2 \times 7 &=& 1110 \\
\hline
&&& \\
10101
\end{array}$$

requires carrying in the 2's, 4's and 8's columns. What is the 9th Fibbinary number?

### Question 5

#### CHANGE RUNNER NOW

20 marks

A natural number x is said to be Fibbinary if, in its binary representation, the addition 2x + x has no carries. For example, 7 is not Fibbinary, since the addition

$$\begin{array}{rr}
7 = & 111 \\
2 \times 7 = & 1110 \\
\hline
& & \\
10101
\end{array}$$

requires carrying in the 2's, 4's and 8's columns. What is the 9th Fibbinary number?

Question 6 30 marks

Ray is playing darts. He always lands his dart in the 20-point section. He has a 30% chance of hitting the 2x multiplier, and a 30% chance of hitting the 3x multiplier. How many darts is Ray expected to throw to score at least 60?

Question 6 30 marks

Ray is playing darts. He always lands his dart in the 20-point section. He has a 30% chance of hitting the 2x multiplier, and a 30% chance of hitting the 3x multiplier. How many darts is Ray expected to throw to score at least 60?

Question 7 30 marks

How many ways are there of colouring a cube with 6 colours such that each face is a different colour? (Two colourings are considered the same if one is a rotation of the other.)

Question 7 30 marks

How many ways are there of colouring a cube with 6 colours such that each face is a different colour? (Two colourings are considered the same if one is a rotation of the other.)

Question 8 30 marks

How many 3 digit numbers have digit sum of 10? (For example, 834 has digit sum of 8+3+4=15.)

Question 8 30 marks

How many 3 digit numbers have digit sum of 10? (For example, 834 has digit sum of 8+3+4=15.)

Question 9 40 marks

Find

$$1 \times \binom{10}{1} + 2 \times \binom{10}{2} + 3 \times \binom{10}{3} + \ldots + 10 \times \binom{10}{10}.$$

Question 9 40 marks

 $\operatorname{Find}$ 

$$1 \times \binom{10}{1} + 2 \times \binom{10}{2} + 3 \times \binom{10}{3} + \ldots + 10 \times \binom{10}{10}.$$



In a  $3 \times 3 \times 3$  cubic lattice, how many lines pass through three lattice points?

Question 10 30 marks

In a  $3 \times 3 \times 3$  cubic lattice, how many lines pass through three lattice points?

### Question 11 CHANGE RUNNER NOW

30 marks

A whole number is called a *brick-trick* if it can be expressed in the form  $m^{n+1} - m^n - m^{n-1}$ , where  $m, n \in \mathbb{N}$ . For example,  $2009 = 7^4 - 7^3 - 7^2$  is a four digit brick-trick. What is the smallest positive n such that no four-digit brick-tricks exists in the form  $m^{n+1} - m^n - m^{n-1}$ ?

### Question 11 CHANGE RUNNER NOW

30 marks

A whole number is called a *brick-trick* if it can be expressed in the form  $m^{n+1} - m^n - m^{n-1}$ , where  $m, n \in \mathbb{N}$ . For example,  $2009 = 7^4 - 7^3 - 7^2$  is a four digit brick-trick. What is the smallest positive n such that no four-digit brick-tricks exists in the form  $m^{n+1} - m^n - m^{n-1}$ ?

Question 12 40 marks

Find all pairs of natural numbers (n, p) such that p < n is a prime and  $n! \times p$  is a square. (Give both p and n.)

Question 12 40 marks

Find all pairs of natural numbers (n, p) such that p < n is a prime and  $n! \times p$  is a square. (Give both p and n.)

Question 13 40 marks

What is the largest volume that can be constructed by cutting a sector out of a unit disc and bending to make a cone? (A sector is a part of a disc bounded by two radial lines and the arc between them.)

Question 13 40 marks

What is the largest volume that can be constructed by cutting a sector out of a unit disc and bending to make a cone? (A sector is a part of a disc bounded by two radial lines and the arc between them.)

Question 14 40 marks

Find all solutions to the equation  $x^2 + x + 29 = y^2$ , where x and y are positive integers.

Question 14 40 marks

Find all solutions to the equation  $x^2 + x + 29 = y^2$ , where x and y are positive integers.

# CHANGE RUNNER NOW

40 marks

A sequence of pairs  $(a_n, b_n)$  is given by the recurrence  $a_{n+1} = (a_n + b_n)/2$  and  $b_{n+1} = 2a_nb_n/(a_n + b_n)$  for  $n \ge 0$ , with initial values  $a_0 = 6$  and  $b_0 = 24$ . What is the limit  $a_\infty + b_\infty$ ?

## Question 15 CHANGE RUNNER NOW

40 marks

A sequence of pairs  $(a_n, b_n)$  is given by the recurrence  $a_{n+1} = (a_n + b_n)/2$  and  $b_{n+1} = 2a_nb_n/(a_n + b_n)$  for  $n \ge 0$ , with initial values  $a_0 = 6$  and  $b_0 = 24$ . What is the limit  $a_\infty + b_\infty$ ?

Question 16 50 marks

Given a parallelogram ABCD, let BC=1,  $\angle BAD=\frac{5\pi}{12}$  and let  $\triangle ABD$  be a triangle where each angle of the triangle is acute. What is the maximum length possible for AB such that four unit radius circles centered at A, B, C and D will cover ABCD? (Your answer may contain trigonometric functions, but must be in simplest form.)

Question 16 50 marks

Given a parallelogram ABCD, let BC=1,  $\angle BAD=\frac{5\pi}{12}$  and let  $\triangle ABD$  be a triangle where each angle of the triangle is acute. What is the maximum length possible for AB such that four unit radius circles centered at A,B,C and D will cover ABCD? (Your answer may contain trigonometric functions, but must be in simplest form.)

Question 17 50 marks

Evaluate

$$\sum_{j=0}^{\infty} j \binom{n}{j}^2$$

(Your answer may contain binomial coefficients, but must be in simplest form.)

Question 17 50 marks

Evaluate

$$\sum_{j=0}^{\infty} j \binom{n}{j}^2$$

(Your answer may contain binomial coefficients, but must be in simplest form.)

Question 18 50 marks

Find all degree 10 real polynomials f which satisfy

$$f(x)f(2x^2) = f(2x^3 + x).$$

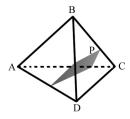
Question 18 50 marks

Find all degree 10 real polynomials f which satisfy

$$f(x)f(2x^2) = f(2x^3 + x).$$

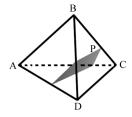
Question 19 50 marks

Given a tetrahedron ABCD with AB=15 and CD=13. Let P denote a plane parallel to both AB and CD so that the distance between AB and P is  $3\sqrt{2}$  and the distance between CD and P is 3. Lastly, when AB and CD are projected on to P, the two projected lines intersect, with intersection angle  $\frac{\pi}{5}$ . What is the ratio of the volumes of the two pieces of the AB side of the tetrahedron compared to the CD half?



Question 19 50 marks

Given a tetrahedron ABCD with AB = 15 and CD = 13. Let P denote a plane parallel to both AB and CD so that the distance between AB and P is  $3\sqrt{2}$  and the distance between CD and P is 3. Lastly, when AB and CD are projected on to P, the two projected lines intersect, with intersection angle  $\frac{\pi}{5}$ . What is the ratio of the volumes of the two pieces of the AB side of the tetrahedron compared to the CD half?



# FINAL QUESTION!

50 marks

Han and Yi are playing badminton. The first player to reach 11 points with at least a 2-point lead wins the match. Han and Yi are equally bad and have a 50% chance of winning each point. Assuming Han loses, what is his expected score?

### Question 20

## FINAL QUESTION!

50 marks

Han and Yi are playing badminton. The first player to reach 11 points with at least a 2-point lead wins the match. Han and Yi are equally bad and have a 50% chance of winning each point. Assuming Han loses, what is his expected score?