## P ar ad Issue 1, 1998 ox

The Magazine of the Melbourne University Mathematics and Statistics Society


Animated Still Life, Salvador Dali, 1956. Oil on canvas.

## Paradox

| Editor: | Jeremy Glick |
| :--- | :--- |
| Layout: | Desmond Lun |
| Sub-Editor: | Kuhn Ip |
| Problems: | Jian He |
| Web Page: | http://baasil.stats.mu.oz.au/Mums/Paradox |
| Email: | paradox@ms.unimelb.edu.au |
| Printed: | April, 1998 |

## Greetings from the Editor

Hello, and welcome to another year of Paradox. A year in which we are planning to bring you several exciting and innovative editions of this magazine, to complement the entertaining schedule of mathematics and statistics related talks, seminars, Olympics, BBQs and more organised by the Melbourne University Mathematics and Statistics Society (MUMS). This year, we hope to include articles by interested maths and stats students of all levels, and in general encourage participation by everyone who wants to see 1998 be a fun and stimulating year (or just wants to pad their C.V. and see their name in print). So anyone who wants to submit any maths or stats jokes, puzzles, articles, pictures, recipes or anything at all - just email it to us at paradox@ms.unimelb.edu.au.

- Jeremy Glick, Paradox Editor

The Paradox team would like to thank the following people: Chaitanya Rao, Vanessa Teague, Jon Faulkner, Tony Wirth, Andrew Oppenheim, Lawrence Ip, Koula Courtot, and everyone else who assisted us in some way but who we have forgotten to name.

## El Presidente says: ¡Viva la revolución!

You may not know it, but you're probably a member of MUMS already! Anyone who is enrolled in a maths or stats subject is automatically a member, and anyone else with an interest is most welcome to join. There's no need to fill out any membership forms, just turn up to our events.

So what do we do?
On the academic side, on Friday afternoons MUMS holds seminars on interesting topics in maths and stats (not the stuff you get in lectures!) with refreshments (drinks and nibbles) served afterwards. One of the more interesting speakers we have lined up is Michael Barnsley, the mathematician who invented fractal image compression and who has gone on to make millions from it.

Last year we didn't have many social functions, but with the new fresh energetic committee, things have changed! We've already had a pizza lunch, and a trivia afternoon is coming up after Easter. Get together your teams now.

Of course the big event of the year is the annual Maths Olympics, a team contest featuring quick thinking, lots of running and the chance to find out what happens when you mix rugby with maths! Look out for the posters early in 2nd semester.

For more information on MUMS and our events, check out our new web page (http://baasil.stats.mu.oz.au/Mums).

If you have suggestions on things we should hold or would like to be placed on our mailing list for announcements, just send email to me.

- Lawrence Ip, MUMS President lip@ms.unimelb.edu.au


## Seminars

Professor Michael Barnsley (1998 Miegunyah fellow) will be presenting the Miegunyah Lecture entitled Mathematics: Vision, Education and Money on Tuesday 28th April at $6: 30 \mathrm{pm}$ in Theatre A, Richard Berry building. For more information, see the notices posted in the Richard Berry building.

In addition, MUMS will be continuing its Friday afternoon seminars. Check the notice boards around the Richard Berry building and This Day regularly to be sure you don't miss one!

## Paradox on the Web

Did you have to step over your best friend in order to grab the last remaining copy of Paradox? Well no longer! Paradox is now available on-line at

```
http://baasil.stats.mu.oz.au/Mums/Paradox.
```

You will be able to read new and old editions of Paradox using your favourite web browser, or print out hard-copies to have and to hold for ever.

## Mathematical humour

To many, "mathematical humour" is an oxymoron; to a quizzical few, it is a tautology. Regardless, here are some examples ...

An engineer, a mathematician, and a statistician went to the races one Saturday, and laid their money down. Commiserating in the bar after the race, the engineer said, 'I don't understand why I lost all my money. I measured all the horses and calculated their strength and mechanical advantage and figured out how fast they could run ...'

The statistician interrupted her: '... but you didn’t take individual variations into account. I did a statistical analysis of their previous performances and bet on the horses with the highest probability of winning ... '
'... so if you're so hot, why are you broke?' asked the engineer. But before the argument could escalate, the mathematician took out his pipe and they got a glimpse of his wellfattened wallet. Obviously, here was a man who knew something about horses. They both demanded to know his secret.
'Well,' he said, between puffs on his pipe, 'first I assumed that all the horses were identical and spherical ...'

Said the Dean to the physics department: 'Why do I always have to give you so much money for laboratories and expensive equipment and stuff? Why couldn't you be like the maths department? - all they need is money for pencils, paper and waste-paper baskets. Or even better, like the philosophy department - all they need is pencils and paper.'

## An apology

The Paradox team would like to apologise for the poor quality of the jokes. However, they were the best we could find. If you believe you can do better, we are willing to offer cash. Whoever submits the funniest maths jokes (printable in Paradox without exposing us to defamation litigation) will win $\$ 10$. ("Funniest" will be decided by the Paradox team.)

## Two boxes of cash

You and a friend are each presented with a closed opaque box which contains a certain sum of money. You are told that one box contains twice as much money as the other. You open your box and find to your dismay that there is only $\$ 10$ in your box. (You are not averse to looking a gift horse in the mouth.) As a saving grace, you are given the option either to exchange your box with your friend's, not knowing how much it contains, or to keep the one which you already possess. What should you do?

If you keep your box, you will definitely earn $\$ 10$. You know that your friend's box either contains $\$ 20$ or $\$ 5$ and that there is a probability of $\frac{1}{2}$ either way. Thus, the expected value of money in his/her box is $\frac{1}{2} \times \$ 20+\frac{1}{2} \times \$ 5=\$ 12.5$, so it is in your advantage to swap. The same reasoning shows that whatever amount your friend starts with, it is in her/his advantage to swap also.

In general, if you start with $\$ x$ and know that your friend has either double or half that amount, you are certain of $\$ x$ if you don't swap and you expect $\$ 1.25 x$ if you do. If this process were repeated many times, you would be 1.25 times richer if you swapped every time than if you abstained from doing so. But the same reasoning shows that your friend is, in the long run, better off swapping too. How can this be?

## A proof that $\pi=0^{1}$

For all values of $\theta$,

$$
\cos \theta=\cos (2 \pi+\theta)
$$

and

$$
\sin \theta=\sin (2 \pi+\theta) .
$$

Therefore

$$
\cos \theta+i \sin \theta=\cos (2 \pi+\theta)+i \sin (2 \pi+\theta)
$$

and

$$
\begin{equation*}
(\cos \theta+i \sin \theta)^{i}=[\cos (2 \pi+\theta)+i \sin (2 \pi+\theta)]^{i} . \tag{1}
\end{equation*}
$$

Recall from De Moivre's theorem that $(\cos x+i \sin x)^{n}=\cos n x+i \sin n x$. Hence (1) can be written in the form

$$
\begin{equation*}
\cos i \theta+i \sin i \theta=\cos i(2 \pi+\theta)+i \sin i(2 \pi+\theta) \tag{2}
\end{equation*}
$$

[^0]Now apply Euler's formula, $\cos x+i \sin x=e^{i x}$, to both sides of (2). We obtain

$$
e^{-\theta}=e^{-2 \pi-\theta}
$$

Dividing both sides of this expression by $e^{-2 \pi-\theta}$,

$$
e^{2 \pi}=1
$$

But $e^{x}$ has the value 1 only when $x$ is zero. Hence $2 \pi=0$, and $\pi=0$.

## Another paradox

What is 'the smallest positive integer not expressible in fewer than twenty-five syllables?'
Note: We have just expressed it in 24 syllables!

## Problems

The following are some problems for prize-money. The person who submits the best (i.e. clearest and most elegant) solution to each problem will be awarded the sum of money indicated beside the problem number, and will have their solution published in the next edition of Paradox. Solutions may be emailed to paradox@ms.unimelb.edu.au. ( $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ format would be appreciated though not demanded.) If you do not have access to email then drop in a hard copy of your solution to the MUMS pigeon-hole near the Maths and Stats Office in the Richard Berry building.

1. (\$10) Let $f(n)$ be the least common multiple of the first $n$ natural numbers. Show that $f(n)$ is not bounded by any polynomial of $n$.
2. (\$5) Let $A_{1} A_{2} \ldots A_{n}$ be a regular $n$-gon inscribed in the unit circle. Show that $\left|A_{1} A_{2}\right| \cdot\left|A_{1} A_{3}\right| \cdots \cdot\left|A_{1} A_{n}\right|=n$.
3. (\$10) $P$ is a point inside a square $A B C D$ such that $P A=1, P B=2$, and $P C=3$. How large is $\angle A P B$ ?

4. (\$10) Using only sin, cos, tan, arcsin, arccos, and arctan keys on a calculator, show that starting from 0 , pressing some finite sequence of buttons will yield any positive rational number $q$. (Functions are in terms of radians, and assume that the calculator has infinite precision.)
5. (\$10) For each positive integer $n$, determine a set of $n$ distinct positive integers such that no subset of them adds up to a perfect square.
6. (\$10) Find the smallest integer $n>4$ such that there exists a set of $n$ people such that any two acquainted people have no common acquaintance and any pair of unacquainted people have exactly two common acquaintances. (Acquaintance is a symmetrical relation; if $A$ knows $B$, then $B$ knows $A$.)

## Unsolved problems

If you consider it beneath your dignity to solve a problem for which a solution has already been found, here are some which are as yet unsolved.

1. Can every positive even integer be expressed as the sum of two primes?
i.e. $4=2+2,6=3+3,8=5+3,10=5+5=7+3,12=7+5,14=7+7$, $16=11+5$, etc.
2. Start with any positive integer $x_{0}$. If it is even, $x_{1}=\frac{1}{2} x_{0}$, otherwise $x_{1}=3 x_{0}+1$. Continue similarly. (i.e. $x_{n+1}=\frac{1}{2} x_{n}$ for $x_{n}$ even, and $x_{n+1}=3 x_{n}+1$ for $x_{n}$ odd.) Must the process always end with 1 (i.e. no cycles other than $4,2,1,4,2,1 \ldots$ )? e.g. $15,46,23,70,35,106,53,160,80,40,20,10,5,16,8,4,2,1$.
3. Is $\pi+e$ irrational?
4. Find five positive integers such that the product of any two is one less than a perfect square. ( $\{1,3,8,120\}$ is a set of four, but does a set of five exist?)

## Chinese mathematics and the volume of a sphere

The contributions made by the ancient Chinese to mathematics receive little recognition. Largely because many of their discoveries were either preceded by similar discoveries in the West, or were rediscovered at a later stage by Western mathematicians. However, this does not mean that they are of no interest or relevance to the modern reader. The contrary is true rather, due to the contrasting methodology adopted by Eastern and Western mathematicians. Moreover, the study of the development Chinese mathematics, and indeed of the mathematics of any ancient civilisation, provides one with considerable insight into the historical development of mathematics as a whole.

## Paradox April centrefold: $\pi$

2.141592653589793238462643383279502884197169399375105820974944592 3078164062862089986280348253421170679821480865132823066470938446 0955058223172535940812848111745028410270193852110555964462294895 4930381964428810975665933446128475648233786783165271201909145648 5669234603486104543266482133936072602491412737245870066063155881 7488152092096282925409171536436789259036001133053054882046652138 4146951941511609433057270365759591953092186117381932611793105118 5480744623799627495673518857527248912279381830119491298336733624 4065664308602139494639522473719070217986094370277053921717629317 6752384674818467669405132000568127145263560827785771342757789609 1736371787214684409012249534301465495853710507922796892589235420 1995611212902196086403441815981362977477130996051870721134999999 8372978049951059731732816096318595024459455346908302642522308253 3446850352619311881710100031378387528865875332083814206171776691 4730359825349042875546873115956286388235378759375195778185778053 2171226806613001927876611195909216420198938095257201065485863278 8659361533818279682303019520353018529689957736225994138912497217 7528347913151557485724245415069595082953311686172785588907509838 1754637464939319255060400927701671139009848824012858361603563707 4620804668425906949129331367702898915210075216205696602405803815 0193511253382430035587640247496473263914199272604269922796782354 7816360093417216412199245863150302861829745557067498385054945885 8692699569092721079750930295532116534498720275596023648066549911 9881834797753566369807426542527862551818417574672890977772793800 0816470600161452491921732172147723501414419735685481613611573725 5213347574184946843852332390739414333454776241686251898356948556 2099219222184272550254256887671790494601653466804988627232791786 0857843838279679766814541009538837863609506800642251252051173929 8489608412848862694560424196528502221066118630674427862203919494 5047123713786960956364371917287467764657573962413890865832645995 8133904780275900994657640789512694683983525957098258226205224894 0772671947826848260147699090264013639443745530506820349625245174 9399651431429809190659250937221696461515709858387410597885959772 9754989301617539284681382686838689427741559918559252459539594310 4997252468084598727364469584865383673622262609912460805124388439 0451244136549762780797715691435997700129616089441694868555848406 3534220722258284886481584560285060168427394522674676788952521385 2254995466672782398645659611635488623057745649803559363456817432 4112515076069479451096596094025228879710893145669136867228748940 5601015033086179286809208747609178249385890097149096759852613655 4978189312978482168299894872265880485756401427047755513237964145


#### Abstract

1523746234364542858444795265867821051141354735739523113427166102 1359695362314429524849371871101457654035902799344037420073105785 3906219838744780847848968332144571386875194350643021845319104848 1005370614680674919278191197939952061419663428754440643745123718 1921799983910159195618146751426912397489409071864942319615679452 0809514655022523160388193014209376213785595663893778708303906979 4077346722182562599661501421503068038447734549202605414665925201 4974428507325186660021324340881907104863317346496514539057962685 6100550810665879699816357473638405257145910289706414011097120628 0439039759515677157700420337869936007230558763176359421873125147 1205329281918261861258673215791984148488291644706095752706957220 9175671167229109816909152801735067127485832228718352093539657251 2108357915136988209144421006751033467110314126711136990865851639 8315019701651511685171437657618351556508849099898599823873455283 3163550764791853589322618548963213293308985706420467525907091548 1416549859461637180270981994309924488957571282890592323326097299 7120844335732654893823911932597463667305836041428138830320382490 3758985243744170291327656180937734440307074692112019130203303801 9762110110044929321516084244485963766983895228684783123552658213 1449576857262433441893039686426243410773226978028073189154411010 4468232527162010526522721116603966655730925471105578537634668206 5310989652691862056476931257058635662018558100729360659876486117 9104533488503461136576867532494416680396265797877185560845529654 1266540853061434443185867697514566140680070023787765913440171274 9470420562230538994561314071127000407854733269939081454664645880 7972708266830634328587856983052358089330657574067954571637752542 0211495576158140025012622859413021647155097925923099079654737612 5517656751357517829666454779174501129961489030463994713296210734 0437518957359614589019389713111790429782856475032031986915140287 0808599048010941214722131794764777262241425485454033215718530614 2288137585043063321751829798662237172159160771669254748738986654 9494501146540628433663937900397692656721463853067360965712091807 6383271664162748888007869256029022847210403172118608204190004229 6617119637792133757511495950156604963186294726547364252308177 . .


The observant reader may have noticed errors in this decimal expansion of $\pi$. As a matter of fact, four non-consecutive digits have been deliberately altered. Prize-money is being offered for the first person to specify the location of these incorrect digits, and what their correct values should be. Answers must be submitted to our email address.
$10 \phi$ will be rewarded for the first incorrect digit, $\$ 1$ will be rewarded for the second incorrect digit, $\$ 2$ will be rewarded for the third incorrect digit, and $\$ 5$ will be rewarded for the fourth incorrect digit.

## From page 5

The emphasis of Chinese mathematics, rather than being on proofs, is on algorithms. Indeed, Chinese mathematical texts consist of problems and solutions, or what could be termed as "worked solutions" by the modern student. (Though presumably, students were given oral instruction in the underlying principles.) A good example of the differing approaches is on the calculation of the volume of a sphere, $V$, which we know as

$$
V=\frac{4}{3} \pi r^{3},
$$

where $r$ is the radius of the sphere.
This result was first proved by Archimedes (287?-212 BC) and published in his work, On the sphere and cylinder, Book I. Translated into modern English, he stated:

Any sphere is equal to four times the cone whose base is equal to the greatest circle in the sphere and whose height is equal to the radius of the sphere. - Archimedes, Of the circle and sphere, Book I, Proposition 34.

Archimedes proved this by contradiction, i.e. by showing that it is not possible for a sphere not to satisfy this condition. (For details, see The works of Archimedes [1].)

The same result was calculated several centuries later by the Chinese mathematician Zǔ Chōngzhī (429-500 AD) and his son Zǔ Gèng. (Note: Chinese names will be denoted by Mandarin Chinese Pinyin.)

Zǔ Chōngzhī was an astronomer and mathematician in the period of the North and South Dynasties of considerable repute. On top of his contributions to mathematics, he made significant contributions to astronomy (most notably the Dà Míng calendar which he constructed), engineering, and the theory of music. Another of his notable achievements in mathematics is the determination of $\pi$ to seven decimal places. Unfortunately, the details of this calculation, and most of his other works, have been lost. Zǔ Gèng continued much of the work of his father.


The method utilised by the pair can be briefly summarised as follows. Consider a cube of side-length $r$, where $r$ is the radius of the sphere. This is $\frac{1}{8}$ the cube circumscribing the sphere. Cut the cube with two cylinders, of radius and height $r$, one through the face of the cube, and the other through the side.

The shape formed by the intersection of two cylinders which circumscribe a sphere, and whose axes intersect perpendicularly, was dubbed "two square umbrellas" (móuhé fānggài) by the mathematician Liú Hū̄. The shape obtained above, by the intersection of the two cylinders and the cube, is $\frac{1}{8}$ the "two square umbrellas", and shall be referred to as "part umbrellas" for convenience.

Take a cross-section of the divided cube at a height $h$. Let $a$ be the length $A C$. Then by Pythagoras' theorem (the analogous result in Chinese mathematics is known as the Gōugǔ theorem),

$$
a^{2}=r^{2}-h^{2} .
$$

Also, $a^{2}=$ the area of the cross-section of the "part umbrella". Hence the area of the shaded area, $S$, is given by

$$
S=r^{2}-a^{2}=r^{2}-\left(r^{2}-h^{2}\right)=h^{2}
$$

which is true for all $h \in[0, r]$.
Consider an upside-down square-based pyramid of height and side-length $r$. Then for all $h \in[0, r]$, S is equal to the cross-sectional area of the pyramid which equals $h^{2}$. The pair reasoned that since the cross-sectional areas were equal at the same height, the volumes must be equal.

The volume of the pyramid is $\frac{1}{3}$ the volume of the cube. Hence the volume of the "part umbrella" is $\frac{2}{3}$ the volume of the cube, and so the volume of the "two square umbrellas" is $\frac{2}{3}$ the volume of eight cubes. Furthermore, since the ratio of the cross-sectional area of the "two square umbrellas" to that of the sphere is simply the ratio of a circle to a square,

$$
V=\frac{\pi}{4} \cdot \frac{2}{3} 8 r^{3}=\frac{4}{3} \pi r^{3}
$$

- Desmond Lun


## References

[1] T. L. Heath (ed.), The works of Archimedes, Dover Publications, Inc., New York, 1953.
[2] Lǐ Yăn and Dù Shíràn, translated by John N. Crossley and Anthony W. C. Lun, Chinese mathematics: A concise history, Oxford University Press, Oxford, 1987.
[3] Yoshio Mikami, The development of mathematics in China and Japan, Chelsea Publishing Company, New York, 1974.

## Solutions to last issue's problems

Problem: In triangle $A B C, A B=A C$ and $\angle B A C=20^{\circ} . P$ is a point on $A C$ such that $A P=B C$. Find $\angle P B C$.
Solution 1: By use of trigonometry and approximation to 10 decimal places, angle $P B C$ looks as though it will be 70 degrees.


This is the case if and only if $\triangle A X B$ is isosceles if and only if $X$ is the centre of the circumcircle for $\triangle A B C$ if and only if $|A X|=|B X|$.

We will use Pythagoras and an equation to show the latter.
Without loss of generality let us scale $\triangle A B C$ so that the equal side length of $\triangle A B C$ is 1 . Let $x=\sin 10^{\circ}=\cos 80^{\circ}$. We will show that $8 x^{3}-6 x+1=0$. Let

$$
\zeta=e^{\frac{2 \pi i}{9}}\left(=e^{i 40^{\circ}}\right)
$$

giving $\cos 80^{\circ}=x=\frac{\zeta^{2}+\zeta^{-2}}{2}$. Diagrammatically, we have:


Consider

$$
\begin{aligned}
& 8\left(y-\frac{\zeta+\zeta^{-1}}{2}\right)\left(y-\frac{\zeta^{2}+\zeta^{-2}}{2}\right)\left(y-\frac{\zeta^{4}+\zeta^{-4}}{2}\right) \\
= & {\left[2 y-\left(\zeta+\zeta^{-1}\right)\right]\left[2 y-\left(\zeta^{2}+\zeta^{-2}\right)\right]\left[2 y-\left(\zeta^{4}+\zeta^{-4}\right)\right] } \\
= & 8 y^{3}-4 y^{2}\left(\zeta+\zeta^{-1}+\zeta^{2}+\zeta^{-2}+\zeta^{4}+\zeta^{-4}\right) \\
& +2 y\left(\zeta^{6}+\zeta^{2}+\zeta^{-2}+\zeta^{-6}+\zeta^{5}+\zeta^{3}+\zeta^{-3}+\zeta^{-5}+\zeta^{3}+\zeta^{1}+\zeta^{-1}+\zeta^{-3}\right) \\
& \quad-\left(\zeta^{7}+\zeta^{5}+\zeta^{3}+\zeta^{1}+\zeta^{-1}+\zeta^{-3}+\zeta^{-5}+\zeta^{-7}\right) \\
= & 8 y^{3}-4 y^{2}\left(\zeta^{0}+\zeta^{1}+\zeta^{2}+\zeta^{3}+\zeta^{4}+\zeta^{5}+\zeta^{6}+\zeta^{7}+\zeta^{8}-\left\{\zeta^{0}+\zeta^{3}+\zeta^{6}\right\}\right) \\
& +2 y\left(\zeta^{0}+\zeta^{1}+\zeta^{2}+\zeta^{3}+\zeta^{4}+\zeta^{5}+\zeta^{6}+\zeta^{7}+\zeta^{8}+2\left\{\zeta^{0}+\zeta^{3}+\zeta^{6}\right\}-3 \zeta^{0}\right) \\
& \quad-\left(\zeta^{0}+\zeta^{1}+\zeta^{2}+\zeta^{3}+\zeta^{4}+\zeta^{5}+\zeta^{6}+\zeta^{7}+\zeta^{8}-\zeta^{0}\right) \\
= & 8 y^{3}-6 y+1
\end{aligned}
$$

Clearly $x$ is a root of $8\left(y-\frac{\zeta+\zeta^{-1}}{2}\right)\left(y-\frac{\zeta^{2}+\zeta^{-2}}{2}\right)\left(y-\frac{\zeta^{4}+\zeta^{-4}}{2}\right)$ and so $8 x^{3}-6 x+1=0$.
This equation may also be derived from

$$
\sin 10^{\circ}=\cos 80^{\circ}
$$

and using the double angle formulae for sin and cos on the RHS until angles of 10 are obtained. The resulting degree 8 polynomial may be factorised (using for example Mathematica into 2 linear terms and 2 degree 3 terms. Substitution shows that $x$ is a solution to the cubic term $8 y^{3}-6 y+1$.

By Pythagoras $(y=)|A M|=\sqrt{1-x^{2}}$. Now $\triangle A P P^{\prime} \sim \triangle A B C$ therefore $\left|P P^{\prime}\right|=$ $(2 x)|B C|=(2 x)^{2}, A M^{\prime}=(2 x) A M=2 x y$ and $M^{\prime} M=(1-2 x) y$.
Also $\triangle X P P^{\prime} \sim \triangle X B C$ so $\left|X M^{\prime}\right|=(2 x)|X M|$ hence $\left|X M^{\prime}\right|=\frac{2 x}{1+2 x}\left|M^{\prime} M\right|=\frac{(2 x)(1-2 x)}{1+2 x} y$ and $|X M|=\frac{1-2 x}{1+2 x} y$.


Now $\quad|A X|^{2}-|B X|^{2}=0$

$$
\begin{aligned}
& \Leftrightarrow \quad\left(2 x y+2 x \frac{1-2 x}{1+2 x} y\right)^{2}-\left(\left(\frac{1-2 x}{1+2 x} y\right)^{2}+x^{2}\right)=0 \\
& \Leftrightarrow \quad\left(\frac{4 x y}{1+2 x}\right)^{2}-\left(\frac{(1-2 x)^{2} y^{2}+x^{2}(1+2 x)^{2}}{(1+2 x)^{2}}\right)=0 \\
& \Leftrightarrow \quad\left(\frac{1}{1+2 x}\right)^{2}\left\{16 x^{2} y^{2}-(1-2 x)^{2} y^{2}-x^{2}(1+2 x)^{2}\right\}=0 \\
& \Leftrightarrow \quad\left\{16 x^{2}\left(1-x^{2}\right)-(1-2 x)^{2}\left(1-x^{2}\right)-x^{2}(1+2 x)^{2}\right\}=0 \\
& \Leftrightarrow \quad-16 x^{4}-8 x^{3}+12 x^{2}+4 x-1=0 \\
& \Leftrightarrow \quad(-2 x-1)\left(8 x^{3}-6 x+1\right)=0,
\end{aligned}
$$

which is known to be true (with $x=\sin 10^{\circ}$ ) from above. Thus the proposition that angle $P B C=70^{\circ}$ follows.

- David Coulson

Solution 2: This is a geometric solution to the problem.


Begin with two lines, at an angle of $20^{\circ}$ to each other. Mark a point $P$ along line $C$ and construct isosceles triangles down the lines.

Thus $B C=B R=Q R=P Q=A P$.

$$
\begin{aligned}
& \angle A Q P=\angle Q A P=20^{\circ} \\
& \angle Q R P=\angle Q P R=2 \angle A Q P=40^{\circ} \\
& \angle B Q R=\angle Q B R=2 \angle Q R P-\angle A Q P=60^{\circ} \\
& \angle R C B=\angle B R C=2 \angle Q B R-\angle Q R P=80^{\circ} \\
& \angle A B C=180^{\circ}-\angle B A C-\angle A C B=80^{\circ}
\end{aligned}
$$

Thus $\triangle A B C$ is the isosceles triangle in the problem. Now $\triangle B Q R$ is equilateral (all angles $60^{\circ}$ ). Thus $Q B=Q R=Q P . \Rightarrow \triangle Q B P$ is isosceles. $\Rightarrow \angle Q B P=\angle Q P B$.

$$
\begin{aligned}
\angle B Q P & =\angle B Q R+\angle R Q P \\
& =60^{\circ}+100^{\circ} \\
& =160^{\circ}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\angle Q B P & =\frac{180^{\circ}-\angle B Q P}{2} \\
& =\frac{180^{\circ}-160^{\circ}}{2}=10^{\circ} \\
\Rightarrow \angle P B C & =\angle A B C-\angle Q B P \\
& =80^{\circ}-10^{\circ}=70^{\circ}
\end{aligned}
$$

— Kuhn Ip

## Working space

In the past, Paradox has been conspicuously deficient of any space for working out solutions to problems contained within it. This year, we are committed to bringing you the highest quality working space available. Enjoy ...

Do you wish that at trivia nights they didn't ask who won the Oscar for Best Actor in 1952 for his role in High Noon but instead asked about Good Will Hunting? Or rather than ask about Raoul Julia and the Addams Family, they wanted to know for which fractal objects his namesake Gaston is famous? Or the manner of Galois' death?

No?
Well, anyway, the Melbourne University Mathematics and Statistics Society

## MUMS

is holding a

# TRIVIA AFTERNOON <br> Friday 1st May 1:30-3:15pm <br> Theatre B, Richard Berry Building 

This promises to be an afternoon of some hilarity interspersed with white-knuckled competition. There will be about sixty (60) questions. Questions will be general but have more than usual emphasis on scientific trivia. Food and drinks will be provided.

Entry Information: ENTRY IS FREE AND OPEN TO ANYONE WITH SOME CONNECTION TO MATHS AND STATS. The competition is limited to fifteen (15) teams. Each team should have six (6) members.

Entry is by writing the names of team members, a name for the team and a contact number or email address on a piece of paper and placing that paper in the MUMS pigeonhole beside the Maths and Stats Office. Rules of competition will be announced on the day. Prizes will include book vouchers for at least the top two teams.

For further information, contact:
Tony Wirth awirth@ms.unimelb.edu.au 9344-4021
Adam Cagliarini aac@ms.unimelb.edu.au
Entries close once the fifteen team spots have been filled,
So get your team in today!


[^0]:    ${ }^{1}$ Eugene P. Northrop, Riddles in Mathematics, Pelican Books, 1964, pp. 210, 211.

