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Words from the Editor

There is an advertisement for Intel doing the rounds at the moment that fea-
tures Ajay Bhatt, co-inventor of the USB, strutting down a corridor at the Intel
headquarters, leaving swooning women and awestruck men in his wake. The
tag-line reads, ‘Our rockstars aren’t like your rockstars.’

If the mathematics community has a ‘rockstar’ it is surely Terry Tao, and he
received a suitably rockstar welcome at Melbourne Uni in September when
he whisked into town for the Melbourne leg of his Australia-wide lecturing
tour. With a Copeland Theatre overflowing with eager maths students and
celebrity spotters alike, devastated latecomers (including myself) had to be
turned away at the door. If only the acoustics at the lecture had been worthy
of a rock concert; the microphone was on so low that the softly spoken Terry
could, by all accounts, barely be heard.

But my disappointment in missing the lecture was short-lived; on a whim
Paradox had asked Terry if he would be willing to grant us brief interview,
notwithstanding his incredibly busy lecturing schedule. To our delight he con-
sented, and the next thing we knew Paradox was face to face with the great
man himself. The resulting interview can be found on page 12 of this edition.
I hope the article conveys the general thrust of the interview, but if anyone is
interested in a full transcript then Paradox will happily oblige.

Given Terry Tao’s status as a top mathematical researcher, it is easy to for-
got that he also regularly teaches classes at UCLA, mostly to post-graduate
students. Zhihong Chen, on exchange at UCLA, managed to enrol in one of
Terry’s classes, and his account of the experience can be found on page 19.

Elsewhere in this bumper edition you can attempt the Paradox Wallpaper
Challenge, indulge your passion for absurdly large counterexamples, or ex-
plore the intersection between the two seemingly disjoint fields of maths and
the law.

The next edition of Paradox will be published after the summer holidays, so if
three long, dreary months without mathematical stimulation proves unbear-
able consider writing an article for Paradox. We are always looking for more
contributors and contributions. Until next year!

— Stephen Muirhead
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Words from the President

As the end of semester begins to looms ever closer, the spectre of exam-doom
appears ever . . . grosser. Ok, so there is a reason why I’m a maths major and
not an arts student!

In other news, it is a good time to be a President. Apparently nowadays one
simply needs to be President for a Nobel Prize to appear in the mailbox. I’ve
been expecting to hear the announcement of my nomination for the last week
or so (though probably not for literature).

On a (slightly) more serious note, MUMS plans to end the semester in the scin-
tillating fashion that we’re so well known for. Yes, we’ll be having our trivia
night on the last day of semester as tradition requires. Expect the usual hijinks
to ensue; in the past we’ve had apple bobbing, epic bridge building competi-
tions and smarties flying across the room into awaiting mouths of eating. To
be honest, I don’t actually have a clue what’s going on this year and hope to
be pleasantly surprised. So, barring any other more important commitments
(as if there’s anything more important anyway), I totally expect to see you, yes
you the reader, at our trivia night. What else could you possibly want to do
on the last day of semester?

— Han Liang Gan (awaiting his Nobel Prize nomination)

Maths in the News:
1) Osama bin Laden is a wizz at mathematical computation
(The Age, 18/10/2009). Apparently, when not plotting ways to
terrorise innocent people, he enjoys ‘showing off his mathe-
matical ability by challenging people to beat his arithmetic with
a calculator.’ We can only hope there is no connection between
these two attributes.
2) Sudoku has been solved (mX, 23/3/2009)! A professor at
South Carolina University has developed a mathematical algo-
ritmh for automatically solving Sudoku puzzles in just five easy
steps. As with automatic crossword solvers, frustrated players
can now turn to a program to crack even the most difficult of
problems. What is unclear is why anyone would get any joy out
of automatically solving a Sudoku.
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The Paradox Wallpaper Challenge

The maths quad has always held a special place in the hearts of all maths stu-
dents; with its majestic Jacaranda tree that flowers only during Swot Vac when
there isn’t anyone around to see it, its legendary resident cat (may he rest in
peace), and the yearly invasion of architecture students peering through fin-
gers held at arms length, testing who-knows-what principle of construction.
Another reason why the quad is so interesting is its distinctive ‘wallpaper’
tiling; some swear it depicts cannibalistic pacmen, others favour interlocked
lips. Yet whatever its interpretation, all 2nd Year pure maths students worth
their salt have at some point asked the question: what wallpaper group is it?

The mathematics of wallpapers are familiar to anyone with a grounding in
group theory. Any repeated wallpaper pattern has a set of symmetries, or op-
erations on the plane which give you back an overlay of the original pattern.
These symmetries may take the form of reflections, rotations or glide reflec-
tions, and considered together form a group. Interesting, despite the infinite
number of wallpaper patterns, there are only a finite number of symmetry
groups that they can have. In fact, there are only 17 of these groups.

The tiling in the maths quad has no reflections, contains a rotation of 180 de-
grees, and allows a glide reflection. This is an example of the pgg symmetry
group. Another type of wallpaper with the same symmetries is the classic
tiling of bricks.
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Inspired by the tiling of the maths quad, Paradox sets the following chal-
lenge. . .

Find examples of all 17 wallpaper groups on the Melbourne Uni campus.

The person, or team, who are the first to send us a complete list of 17 locations
wins the prize of $20! If no-one submits a complete list of all 17, or indeed
if all 17 do not exist (p6 may prove problematic!), the submission with the
greatest number of distinct examples by the date of publication of the next
edition (expected to be in April) will take the prize. Submitted locations must
be explicit enough for Paradox to be able to verify them. Drop submissions
into the MUMS room, or email them to Paradox.

To help you in this quest, an easy reference for distinguishing all 17 groups is
included below.1 Good luck!

Reflection?
Least Rotation Yes No

60 degrees p6m p6

90 degrees Mirrors at 45 degrees? p4Yes: p4m No: p4g

120 degrees Rotation centre off mirror? p3Yes: p31m No: p3m1

180 degrees
Perpendicular reflections?

Yes No Glide reflection?
Rotation centre off mirror? pmg Yes: pgg No: p2
Yes: cmm No: pm

none Glide axis off mirror? Glide reflection?
Yes: cm No: pm Yes: pg No: p1

Puzzle

Can you carve out a portion of a unit cube in such a way that it
will allow another unit cube to pass through it?

(The solution is on page 20)

1http://en.wikipedia.org/wiki/Wallpaper group.
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Wrap-up from the UMO

The 2009 University Maths Olympics was held on Friday 18th September in
the JH Michell Theatre. Ok those are enough boring details. Let’s move on to
some of the more interesting aspects of the day:

• There was a record turn-out of 27 teams. By record, I mean the most that
I can remember.

• Assoc. Prof. Barry Hughes, our esteemed MC, turned up in fancy dress.

• I was almost deafened by a blast from a whistle for someone red carded
for running. Please stop running, for my sake.

• Barry Hughes produced what is arguably the worst mathematical joke
ever. It was that horrendous one about how the integral of 1/cabin is a
houseboat (log(cabin)+ c, get it?).

• I managed to lose my black pen that day. If anyone has seen it, please
hand it in to the MUMS room.

• The MUMS mascot, a giant blue TI-83+ calculator was forcibly ejected
by Barry Hughes under strict adherence to the ‘No Calculators’ rule.

• We got to use the reverse side of those Quality of Teaching survey forms
for scrap paper. Finally, some use has come out of those sheets.

• I forgot to thank Barry Hughes publicly at the actual event, so I’m taking
this space to do so now.

• Oh and some team called Mudkip Tangents only just won, ahead of Ore-
some Foursome and THYND. Full results, questions and solutions can
be found at http://www.ms.unimelb.edu.au/˜mums/olympics/.

All in all, it was a great event! Bar a very trivial (notice how lecturers always
claim something is trivial when it isn’t?) error that will be duly forgotten,
the event went exactly to plan and everyone had fun. I mean, they had to,
because it was written in the rules that they must. Thanks again for everyone
who turned up (and thus had fun), and I hope to see you all again next year!

— Han Liang Gan
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The Integrating Machine

A mechanical integrating machine!? In the Maths department!

When I’d first heard about this machine my mind had conjured up images of
a giant, room-size contraption, graphs fed in on one side and definite integrals
spat out the other, complete with a hand-crank to make it work. Lying in an
wooden box measuring about 100cm by 30cm, and looking a bit like a giant
compass, reality was somewhat less impressive. John Groves, the machine’s
custodian for the last several decades, told me a bit about its history. Around
80 years old, the Intergraph had its heyday in the pre-computer age, when it
allowed quick, if not entirely accurate, approximations of definite integrals.
In the 60s, once affordable computers started appearing, it fell into disuse,
and eventually John rescued it from under piles of junk to give it a more hon-
ourable resting place in his office, alongside other mathematical curiosities
such as a parabola sketcher and an ellipse sketcher. He maintains an interest
in such machines because of their intricate construction — he compares it to
the fascination some people have for old clocks — and the ‘Made in Geneva’
tag sported by the Integraph certainly speaks of old-world precision.

More a curve sketcher than a numerical machine, the Integraph allows you
to produce an integral curve for any original curve you care to put to paper,
allowing you to read off the definite integral via the Fundamental Theorem
of Algebra.1 It works off a simple basic principle; the gradient of the integral
curve is in proportion to the value of the height of the original curve, and so,
as the user traces one end of the machine over the original curve, the other end

1R

b

a
f(x) = F (b) − F (a).
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draws a curve in a direction corresponding to this gradient. Simple enough in
theory, in practice the contraption is a complex combination of hinges and slid-
ing parts, and a closer look gave me a real appreciation for the workmanship
that had gone into it. But to get a true feel for it, I needed to try it out.

‘Look after it’, John warned me as I took the thing down to the MUMS room
to experiment, reminding me that it was worth somewhere in the five figures.
’They don’t make things like that anymore.’

We’d penciled in around half an hour to do some basic definite integrals; a
parabola, a half-circle and the density of the normal distribution, but con-
fronted with a complex machine, and an instruction booklet weighing in at
an ominous 50 pages, things took a little longer than expected. The first task
was getting the Integraph to draw anything at all. Everything that could go
wrong did; pencils screwed in too tight or too loose, clasps left undone when
they should have been clamped, curves veering off the paper or off the table.
Our first success at drawing — our machine producing a cubic as the integral
of a standard parabola — was duly celebrated, until someone noticed the cu-
bic curve was not flat at zero, meaning the calibration was wrong. And it was
this second aspect that proved the more troublesome. Everything on the ma-
chine had to be aligned properly; the wheels parallel to the x-axis, the tracing
arm aligned to give a y-value of zero, the drawing arm parallel to the x-axis of
the integral curve. It all had to be physically perfect. And by the time we had
mastered all of this, and were ready to produce some results, two hours had
already elapsed and we were fast running out of time.

First up was the integral of an odd function, between -1 and 1. The integral
curve ended up pretty much where it had started, equating to a definite inte-
gral of 0, so our hours-long attempt at calibration was finally paying off. Now
to get a proper definite integral. We attacked the Normal distribution density,
famous for not having an indefinite integral of closed form, thus whose defi-
nite integrals are mere approximations. Perhaps we could approximate them
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better with our newly calibrated Integraph! Tracing a standard normal be-
tween -2 and 2, we ended up with an integral curve which had a displacement
of 167.0mm. Multiplying by the initial calibration factors (the gradient multi-
plier, the scales on the axes) we ended up with a definite integral of 0.9355 (to
4 dp) compared to the z-value in the tables of 0.9545 (to 4 dp). Perhaps time to
update those tables?

A quick flick through the instructions demonstrates the versatility of the Inte-
graph, beyond just solving definite integrals. For instance, by switching the
position of tracer and pencil, it can differentiate any given curve. More sur-
prisingly, given any closed shape, the Integraph, through a process of suc-
cessive integrals, can find the centre of gravity of this shape. Finally, using
repeated integration, it can sketch polynomials of any order, and thus by in-
spection solve the roots of these polynomials. To this end we used the Inte-
graph to sketch a cubic, by starting with a linear graph and integrating twice,
factoring constants in at each step.

The Integraph is a fascinating tool, but its accuracy depends much on the fas-
tidiousness of its user. Requiring more than just careful calibration, since the
actual tracing of the curve to integral has to be done manually a steady-hand
can make the difference between success and failure. And since you are trac-
ing the curve while rolling the 5kg-odd machine along behind you this is no
easy task.

Nevertheless, the Intergraph is a window into a world which no longer exists,
and using it you can’t help experience a certain wonder at the achievements
of this past age. The romantics would have it that the pre-computer era was
more disciplined, more careful, more technically sound. And perhaps this is
true. But, after spending three hours to set up a machine to tell me that the
integral of x2 on x ∈ [−1, 1] is 0.6523, I was experiencing another sensation
entirely; a resounding pity for those for whom the Integraph was not a curios-
ity but a necessity. Like the slide rule, there are those who lament the loss of
the Integraph from the desks of mathematicians. But such people are in all
likelihood not the ones who were ever forced to use them!

For those eager to check out this fascinating machine, there is one on perma-
nent display in the Wilson lab in the Richard Berry building. Paradox would
like to thank John for generously allowing us to test out the machine.

— Stephen Muirhead
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Paradox Speaks to Terry Tao

We know everything, we just can’t prove it.

—- Terry Tao

Terry Tao is a man who needs no introduction. Called the ’Mozart of Maths’,
the youngest ever winner of a gold medal at the International Maths Olympiad
has well and truly lived up to his childhood potential, and a few years ago be-
came Australia’s first Fields medalist. He is nothing short of a legend amongst
Australian mathematicians and maths students alike.

Understandably then, when Terry Tao made a whirlwind stop in Melbourne
recently, he was a man in high-demand. Delivering three lectures in three
days, his time was definitely not to be wasted. That’s why, when I heard we’d
be interviewing him for Paradox, I had to be damn sure I had my questions
down. . . 1

First impressions are often deceptive, and with Terry this was no different. As
we started off the discussion, under the slightly intimidating gaze of a pro-
fessional journalist from The Australian newspaper, he seemed more nervous
than I was, with fast head movements and minimal eye contact. But being
the battle-hardened interviewee that he is, Terry warms quickly to the task,
and after a few hesitant one-word answers, he relaxes and begins to discuss
openly. Our first topic is something that he is well known for commenting on:
the state of mathematics in Australia.

Maths in Australia

Even though he is unable to visit Australia often, Terry retains a strong inter-
est in the well-being of maths education in Australia, especially at the tertiary
level. Through his blog,2 he has drawn attention to the retrenching of staff
in various maths departments around Australia over the last couple of years.
Upon his return to the country, the first thing Terry did was assess how things
are going on the ground. ‘It doesn’t seem to be getting much worse’, he re-
marked carefully, ‘but it doesn’t seem to be getting better either.’

1Though, being so excited, I first had to re-learn how to hold a pen!
2http://terrytao.wordpress.com/
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Terry is worried by the fact that maths departments are being broken down
and refocused to serve the needs of more vocational disciplines, and that Aus-
tralia runs the risk of failing to provide the same research opportunities for
maths graduates available in other countries, such as the US. ‘The top five
universities are still world class and always have been, with people who are
just as good, if not better [than those in the US], so it’s still looking good in
that respect. However there is a lot of pressure on the departments in the
tiers below. For example, Victoria University has a well regarded inequalities
unit, which is in danger of being cut as part of restructuring. In the worst
case scenario, Australia may be left with only the top five universities’ [with
real maths departments].3 Whilst the other universities will still be able to
churn out bachelor degrees, already people in industry have started complain-
ing that the graduates at these universities weren’t being given the skills they
needed for the workforce.’

Terry contrasts the bean-counting approach taken by some universities in Aus-
tralia with the mindset prevalent in the United States, where many more uni-
versities, even those outside the top tier, compete to maintain their research
quality. ‘The funding situation is more stable and the universities are not try-
ing to squeeze every last dollar out of student enrollment. They take a more
long-term approach and invest in their research program. In the US, many
of the administrators come from academic backgrounds, so they sort of ’get’
research, and don’t try to cut corners.’ Nevertheless, though critical of the sit-
uation in Australia, Terry is careful to point out that not everyone should be
tarred with the same brush. ‘There are many good administrators in Australia
as well.’

Maths in the wider society

Terry believes one of the reasons behind the slow erosion of maths faculties
around Australia, and the surprising lack of public outcry about it, is the poor
perception of maths in the wider society. ‘Whilst it is the most basic of basic
sciences, people don’t see the relevance of maths, when it is far more relevant
than they can imagine. Maths is used in everything and any major technolog-
ical advance has its foundations in mathematics.’

One reason for this poor image is that mathematics is not well portrayed in

3Terry is (obviously) including Melbourne University as one of these five.



Page 14 Issue 3, 2009 Paradox

the public media. ‘You get the slightly crazy genius stereotype and none of the
cool role models that you might get in the other disciplines.’ The abstractness
of maths is another factor that prevents people relating well to maths, con-
cedes Terry. ‘With astronomy you can look into space, with physics you can
watch a pendulum and so forth, but with maths it is more intangible. . . you’re
looking for the hidden factors.’

However, Terry notes that ‘often it is precisely because the underlying idea
is an abstract one that it is widely applicable. There are mathematical tricks
which can be used all over the place, but people don’t think of these tricks as
mathematical, so mathematicians don’t get the credit.’

He gives the example of the classic problem involving 12 gold coins where one
of them is counterfeit and only distinguishable by its weight. The challenge is
to work out which coin is fake using a scale no more than three times, and the
trick is to weigh the coins in groups. While this appeared to be an exclusively
abstract problem, during the first world war, when doctors needed an effi-
cient way to test soldiers for TB and syphilis, someone realised the analogy; in
any given population the prevalence of these diseases was very low, so it was
more efficient to mix the blood of many soldiers together and test this sample
instead. This ‘group testing’ is now ubiquitous. Terry’s point is that ‘instead
of using biology to solve a specific problem, we can use maths to solve a more
generalised version of the problem that can then be applied to many different
fields.’

Terry lists other examples where maths has been incorporated into everyday
life, such as the use of matrices in the Google page-rank algorithm, com-
pressed sensing to make MRIs more efficient, and the use of disentangling
algorithms on mobile phones to prevent interference when multiple phones
are used in the same room. ‘The world makes more sense when you look at it
through maths. [Technology] is not just magic boxes that do things,’ he jokes.

However, the rise of scientifically-themed television shows offers some hope
in improving the image of mathematics. He believes the ‘best way to make
maths accessible is not to make it the focus of the show. . . which means not
trying to ram it down people’s throats.’4 He mentions shows such as N3mb3rs
and Mythbusters, who ‘have mathematicians on staff and try to incorporate
mathematics, but [who] don’t try to make it too obvious.’

4On that note, we hope you find Paradox entertaining and accessible, and it’s much better
than having copies rammed down your throat. Trust me, I’m a doctor.
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Though many students look back on their days of maths class with horror,
Terry doesn’t believe that people can be split into those who ‘get’ maths and
those who don’t. ‘A lot of people say they wouldn’t touch maths with a 10 foot
pole5 and yet they love Sudoku puzzles. Sudokus are really mathematical in
the way you have to think about things and reason. So I think a lot of people
are capable of doing this sort of thing, they are just not exposed to it.’

Terry believes that having a good teacher can make a ‘huge difference’ and
feels that this was true in his case. ‘You can have a bright student with a lousy
teacher and he can be turned off the subject for life. But the converse holds true
as well. I know quite a few research mathematicians who started out rather
late. It’s not like only 1% of 1% of the population can do this stuff. Some of the
people I work with started off in completely different fields.’6

It is perhaps his own positive experiences which drive Terry to be as good
a lecturer as he is a research mathematician. ‘It makes you feel useful,’ he
candidly admits, because ‘one of the problems with doing all this abstract stuff
is that sometimes it is hard to feel like you are doing anything productive.
But if you are talking to a student who doesn’t get it and then suddenly they
‘click’ and you can see it in their eyes, then that is a really nice feeling. You’ve
explained something and they’re not going to lose that.’

Life as a professional mathematician

Terry freely concedes that an academic’s life is ‘different’ from other jobs.
‘Most jobs you’re working nine-to-five and then you go home and you’re
done. If I have free time, then I’ll always be thinking about maths. [A math-
ematician] is never really working full on and never really quits their job:
you’re never totally away from it.’

When asked for his approach to solving difficult problems, and perhaps even
the secret to why he is so successful where others fail, Terry is typically mod-
est. ‘Often it’s about keeping yourself in the right mindset. If you want to
solve a problem there are lots of things you need to keep at your fingertips,
and you have to have everything in your head at once. Working, in this sense
is a subconscious thing. You’re probably going to laugh at me but I don’t really
know how I’m doing it!’

5American idiom of unknown origin. Better known in Australia as the good old 3.048m pole.
6So there is still hope for yours truly!
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While many undergraduates, in their young and foolish days, have dreamt of
solving the famous unsolved problems in mathematics,7 Terry warns that the
life of a research mathematician is rarely as glamorous. ‘A lot of the techno-
logical advances don’t come as revolutions. You just try to make this year’s
product a little bit better than last year’s, and after 10 years you have a re-
ally good product. That’s how maths works these days. Mathematicians are
pushing the envelope of their abilities and taking these small steps in under-
standing. It’s more like an evolution than a revolution.’

Indeed, Terry actively shies away from working on these ‘impossible goals’ in
mathematics, one which he likens to ’treasures on top of cliffs that no one can
climb’. Instead he tackles what he calls ’basic research’, the preparatory work
for other people. ‘For applied topics, I might get interested if someone can
abstract out a problem for me to work on!’

Nevertheless Terry freely admits that mathematicians often fail to see the big-
ger picture. ‘A lot of the maths that we do is not used for maybe 10 or 20 years.
Then someone will come to us with a problem and we’re like ’oh, we solved
that a long time ago, we just never thought of an application!”

However, there are some areas where Terry believes true breakthroughs in
mathematics can still be made. ‘A lot of biomaths is just beginning to get off
the ground. We want faster gene sequencing and to work out which genes are
causing which diseases. Protein-folding involves a lot of complicated maths
and we don’t yet know how to do it properly. Another area is in financial
maths. A misunderstanding of the mathematics underpinning risk analysis
was one of the causes of the current financial crisis.’

Collaboration is also an integral part of the way mathematicians work these
days. As part of his lecture at Melbourne Uni,8 Terry showed how he and other
research mathematicians used various tools such as forums, blogs and wikis to
share their ideas and progress with each other, especially where solutions may
span many diverse subfields of mathematics. As an example, Terry recounts
how he posted Question 6 of this year’s International Maths Olympiad paper9

on his blog. In a powerful demonstration of collaborative mathematics he
had over 30 partial solutions submitted. With people working together, they
eventually got a complete solution in 2 days. This was a bit of fun, he jokes,
‘but most of the problems I do now can’t be solved in two days!’

7Everyone on the MUMS Committee, for example!
8‘Mathematics and the Internet’, part of the Clay-Mahler series of lectures.
9A question only solved by three competitors.
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Some advice from Terry

Many undergraduate readers of this magazine may be considering going over-
seas in order to do post-graduate study, and for their benefit I asked Terry to
reflect on his personal experiences, and what advice he would give to people
tossing up between staying put in Australia or heading overseas.

‘I think it’s a great idea, I definitely benefited a lot from going overseas. Cer-
tainly I think you should do your post-graduate study at a different university
from where you were an undergrad. If you don’t, you can get into the mental-
ity where you’re just doing some sort of fancy version of your undergraduate
study. Post-graduate study is really quite different, you have to be much more
independent and you have to go and seek out things on your own. If you want
to learn something you can’t just wait until your classes or exams, you have to
go to the library or the internet or wherever. There are a lot of good places in
Australia, but you should not be afraid of going overseas.’

Fun facts about Terry, gleaned from the interview

• In his first class as a lecturer, he was only one year older than his stu-
dents. ‘It was kinda cool to be the oldest person in the room for a
change,’ he jokes.

• At the 1987 International Maths Olympiad in Cuba, Terry was thrown
into the pool by one of the non-medalists on the team, obviously jealous!

• Terry enjoys reading fantasy novels, and still remembers the characters
and places from Eddings and Pratchett novels.

• He says he can solve a Rubik’s cube ‘in theory’.10

• He has an Erdös number of three, a Bacon number of ∞,11 and a Colbert
number of zero!12

• Riemann Hypothesis: true or false? ‘True! But not solvable in the next
50 years.’

10Note this probably means he has a non-constructive proof!
11If you don’t know what these mean see http://en.wikipedia.org/wiki/Erdos-Bacon number
12‘The Colbert Report’, Sept 26, 2006: ‘Terence Tao, mathematician. . . I’ll give you a number:

ZERO!’
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• What about the Twin Prime Conjecture and Goldbach’s Conjecture? ‘True,
true, all true. In number theory, we know everything, we just can’t prove
it.’

Epilogue
With our allotted time rapidly running out, we felt we had to use this oppor-
tunity get Terry’s autograph, and what better than to get him to sign a MUMS
t-shirt.13 Though, this being a semi-official interview, and with the journal-
ist from The Australian still in the room, we weren’t at all sure how he would
respond. To our relief, not only did he graciously accept, he even looked a
little bit chuffed to be asked. With the journalist frantically scribbling in his
notepad, Terry recounts how he was similarly ambushed by some high-school
kids that had recognised him on the street in Sydney.

Despite his obvious modesty, I get the feeling even Terry can’t help but feel
a little satisfied by such rare events, not so much for the sake of his own ego,
but more the fact that a mathematician, any mathematician, is getting the same
sort of media and public attention that we have so long heaped on other mem-
bers of our society.14

Yet these thoughts come crashing back to earth when we offer to help Terry
find his way back to the Richard Berry building from the AMSI offices on
the other side of campus. As we gratefully seize this opportunity to ask him
questions we hadn’t had time for in the interview, I am struck by how incon-
spicuous the three of us are, looking just like any other group of students on
campus, getting barely a glance from passers-by. He may be the 21st century’s
only celebrity mathematician, but the people on South Lawn clearly could not
care less!

— Charles Li

Charles and Terry outside the MUMS room.

13Which now sits proudly in the MUMS room.
14Sportsmen being the obvious example, but let’s not go there.
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A Quarter with Professor Tao

A 760 for the SAT math section at eight; IMO gold medalist at 13; Ph.D. from
Princeton at 20; full professor at 24; Fields Medalist at 31. Mathematicians in
Australia would know that these are not the achievements of John Nash of ‘A
Beautiful Mind’ fame, or ‘that person from ‘Good Will Hunting” but rather
a former child prodigy from humble Adelaide. In 2006, Terence Tao became
the first Australian and one of the youngest ever to win the coveted Fields
Medal, garnering a host of acclaim from renowned mathematicians around
the world and becoming an instant celebrity amongst students of mathematics
in Australia.

At the start of 2009, I was one of these students who had the fortune of meet-
ing Terence Tao in person. As an exchange student at UCLA for the Fall of
2008, I was delighted to discover that Professor Tao was teaching a graduate
course in real analysis in the following quarter. Upon gathering the relevant
paperwork to bypass the bureaucracy, I successfully enrolled in the class as an
undergraduate student.

Terry Tao has always been known as a young achiever, yet it is still easy to
forget that he is only in his early thirties. When he walked into the classroom
for the first lecture, there was a noticeable moment of realisation for some; the
groundbreaking mathematician did not look much older than the class he was
teaching. Casually dressed and donning a small backpack, Tao could well be
mistaken for a student, while a passerby could be forgiven for thinking that
his teaching assistant was the professor.

The prevailing wisdom amongst students is that great researchers do not nec-
essarily make great teachers; however, Terry Tao certainly does not fall in this
category. Meticulous and organised, Professor Tao prefers a multi-pronged
approach to learning. He is a traditionalist, a user of the chalk and blackboard
during class, yet he also realises the value of the internet and the blog, of-
ten posting detailed notes on his personal webpage.1 He also did not hesitate
to assign problems from a textbook authored by another mathematician. He
often enjoys discussing the intuition and motivations behind a mathematical
result, preferring to focus on conditions that would cause a theorem to fail
rather than those that would allow it to hold.

1Terry Tao maintains his blog at http://terrytao.wordpress.com/ with notes to his courses as
well as his research.
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The course itself, while challenging, was not prohibitively hard; at the start
of the course, the assignments were long and tricky, however, as the quarter
continued, the assigned problems became more accessible. Many of us felt
the professor was deliberately recalibrating the difficulty to suit the abilities
of students. In between all the serious discussions and assessments on mathe-
matics, there was still some space for humour. The professor once claimed that
he had a “three-line proof” to a not-so-trivial theorem, and after some hand-
waving, the crux of the proof involved drawing three lines. Another time,
shortly before the final exam, he quipped: ‘Once you’ve done all the exams
and quals,2 that’s when the real learning begins.’

Tao’s celebrity status is of course not limited to our shores; throughout the
quarter, the class size would fluctuate, with various students suddenly ap-
pearing in class on some days while the more enthusiastic did not even pre-
tend to be legitimately enrolled. When the last class for the quarter ended, in
what can only be described as a calculated ambush, two students stepped into
the room and in full view of our class, requested a photo with Professor Tao,
who obliged with a wry smile.

Those who were in his class had subtler ways of having an audience with the
professor; his office hours would be utilised by some students to discuss all
things mathematical, both related and unrelated to the course. At the end of
the course, I also used this as a means for a general chat with Professor Tao
about various topics including ‘jobs in industry versus academia’. The end of
a quarter with Professor Tao was capped off by him signing my textbook.

— Zhihong Chen

Solution to the Puzzle on Page 7
Yes! Consider a unit cube viewed from directly above one of
its vertices. The cross-section of the cube from this angle is
a hexagon of side-length

√
3√
2
, and the largest square that fits

inside this has side-length
√

6 −
√

2 ≈ 1.035. Thus a cube of
side-length less than 1.035 can pass through it. See YouTube
for a demonstration! Interestingly, the largest cube which can
pass through, the Prince Robert’s Cube, has side-length 3

√
2

4 ≈
1.061.

2Most PhD programs in Mathematics in the USA will require students to complete course-
work and pass qualification exams in major areas of mathematics, including analysis, algebra and
geometry.



Paradox Issue 3, 2009 Page 21

Maths and the Law

When I tell people that I study both Maths and Law, the typical response is
surprise: ‘That’s a strange combination! How do they relate to each other?’
Most of the time, the answer is that they don’t. This article gives an overview
of some areas of overlap between the two.

Famous Lawyer-Mathematicians

There are not many Law/Maths students out there,1 but to console those of
us who feel outnumbered by the masses of Law/Arts, Law/Commerce and
Commerce/Science students, here are some examples of Law/Maths students
who have made it to the pinnacle of their profession.

Lord Denning (1899-1999)
Quite apart from anything else, the elementary mathematics of
judges are prone to error, except in the case of Lord Denning who
was a wrangler, and his maths are too good for anyone else to un-
derstand.2

Described as ‘the most celebrated English judge of the 20th century’,3 Lord
Denning is a figure familiar to any law student who reads their prescribed
course materials. He was a judge in the House of Lords from 1957-62 and
Master of the Rolls from 1962-82. Known for his easy-to-read and sometimes
radical judgments, his achievements in law included inventing the Mareva
injunction and establishing ‘deserted wife’s equity’.

What is less well-known is the fact that Lord Denning studied pure mathe-
matics at Oxford and graduated with first class honours in 1920.4 He subse-
quently taught maths at Winchester College for a short period, before deciding
to study law and join the bar.

1As an interesting side note, MUMS seems to be a magnet for Law/Maths students. On
our current committee (see http://www.ms.unimelb.edu.au/˜mums/committee/), four of the 12
members are Law/Maths students.

2Anthony Nicholson, Esprit de Law (1973) 236.
3Clare Dyer, ‘Lord Denning, Controversial “Peoples Judge”, Dies Aged 100’, The Guardian, 6

March 1999 http://www.guardian.co.uk/uk/1999/mar/06/claredyer1.
4Edmund Heward, Lord Denning: A Biography (1990) 11; Iris Freeman, Lord Denning – A Life

(1993) 65.
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Harry Blackmun (1908-99)
Harry Blackmun was a justice of the US Supreme Court from 1970-94. He is
best known as the author of the Court’s opinion in Roe v Wade,5 which en-
shrined a constitutional right to abortion. Roe v Wade was fiercely debated and
Blackmun reportedly received death threats over the case.

Like Lord Denning, prior to achieving fame in the legal arena, Blackmun had
studied mathematics at university, graduating from Harvard College summa
cum laude6 in 1929.7

Pierre de Fermat (d. 1665)
Given that this is a maths magazine, Fermat needs no introduction. These
days, Fermat is remembered solely for his mathematical achievements. But
Fermat’s primary occupation was actually as a lawyer and jurist; maths was a
part-time preoccupation, albeit one at which he excelled. Fermat received the
title of councillor at the High Court of Judicature in Toulouse in 1631, a title he
held until his death.8

Mathematics in Law
Mathematics, a veritable sorcerer in our computerized society, while
assisting the trier of fact in the search for truth, must not cast a spell
over him.9

This section looks at some of the areas in which courts may rely on mathemat-
ics (usually in the form of probability or statistics) in reaching their decisions.
Each area includes references to secondary sources if you are interested in a
more comprehensive treatment of the maths in question.

Standards of Proof

In civil cases, the standard of proof is ‘on the balance of probabilities’.10 In
other words, for the plaintiff to succeed, the court must be satisfied ‘on the

5410 US 113 (1973).
6’With the highest praise’.
7Wikipedia, Harry Blackmun, http://en.wikipedia.org/wiki/Harry Blackmun.
8Wikipedia, Pierre de Fermat, http://en.wikipedia.org/wiki/Pierre de Fermat.
9People v Collins, 438 P 2d 33 (1968).

10In contrast, the standard of proof in criminal cases is ‘beyond reasonable doubt’.
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balance of probabilities’ that they have made out their case.

The extent to which maths plays a role in this standard of proof is unclear.11

Lord Simon in Davies v Taylor stated that:

[b]eneath the legal concept of probability lies the mathematical the-
ory of probability. Only occasionally does this break surface – apart
from the concept of proof on a balance of probabilities, which can
be restated as the burden of showing odds of at least 51 to 49 that
such-and-such has taken place or will do so.12

But Dixon J in Briginshaw v Briginshaw expressed his disapproval of such ‘me-
chanical comparison[s] of probabilities’13 and adopted a more common-sense
approach requiring the plaintiffs allegation to be made out to the ‘reasonable
satisfaction’ of the court.

Given that in many cases it is impossible to assign precise probabilities to
events in question, it can be seen why the common-sense approach is more
widespread. Nonetheless, some judges have seized the opportunity to use the
probability they learnt in high school. An example is the NSW Court of Ap-
peal’s judgment in Rose v Abbey Orchard Property Investments Pty Ltd.14 The
defendant owned a car park, and the plaintiff had slipped on an oil patch on
the floor in the car park. The plaintiff sued the defendant for injuries she had
suffered in the fall, arguing that the defendant had breached its duty of care
to maintain a proper system of inspection to avoid such accidents. The plain-
tiff had been injured at 3:10pm. It was unknown how long the oil patch had
been on the floor, but the last inspection prior to the accident was at 2:10pm.
The Court held that a proper system required inspections at intervals of not
more than 20 minutes; the defendant would thus be liable if, on the balance
of probabilities, inspections at 2:30pm and 2:50pm could have prevented the
accident. The Court reasoned:

But. . . the probabilities are twice as great that the oil was spilt in the
40 minutes period between the last inspection and 2:50pm rather
than the 20 minute period after 2:50pm. . . Accordingly, we think
that as a matter of probability the oil was spilt before 2:50pm and
not after that time. To so find is not to engage in speculation but

11See Justice D H Hodgson, ‘The Scales of Justice: Probability and Proof in Legal Fact-Finding’
(1995) 69 Australian Law Journal 731.

12[1974] AC 207, 219.
13(1938) 60 CLR 336, 361.
14(1987) Aust Torts Reports 80121.
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to make a finding in accordance with probability theory. In a civil
case the plaintiff has only to prove her case on the balance of prob-
abilities. It follows, therefore, that on the probabilities the oil was
spilt at a time which would have permitted a proper system of in-
spection to remove it prior to the time of the accident.15

Mens Rea of Murder

In Australia, a person who kills someone can be convicted of murder if they
satisfy one of the two types of ‘mental states’ (or mens rea) of murder: intent
or recklessness. A person is reckless in the requisite sense when he/she knew
that death or grievous bodily harm would probably result from his/her con-
duct but nonetheless chose to act that way.16

The question is: what does knowing that death would probably result actually
mean? Here, the courts have been keen to divorce the definition of reckless-
ness from any mathematical notion of probability; the High Court has pointed
out that the average person does not think about the consequences of his/her
actions in terms of mathematical probabilities.17 This has lead to a rather
messy state of affairs where ‘probably’ is given a different meaning to pos-
sibly, but includes situations where the mathematical probability of death is
less than 0.5.

A good illustration of this is the interesting case R v Faure.18 The defendant
shot his girlfriend in the head and was charged with murder. He claimed that
he hadn’t intended to kill his girlfriend; rather, they had been playing a game
of Russian roulette, using a six-chamber revolver with a single cartridge in one
of the chambers. The defendant and victim took turns pulling the trigger while
pointing the revolver at the others head, agreeing to stop after each had had
two turns. On the defendant’s final turn, the revolver discharged, killing the
victim. The issue was whether the defendant could be convicted of reckless
murder: presuming his story to be true, did the defendant know that death
or grievous bodily harm would probably result from this game of Russian
roulette?

The judgment in Faure noted that the probability of the revolver discharging
15Ibid [68].
16R v Crabbe (1985) 156 CLR 464.
17Boughey v The Queen (1986) 161 CLR 10, 1920 (Mason, Wilson and Deane JJ).
18[1999] 2 VR 537.
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at some point in the Russian roulette game was 671/1296, but went on to say
that ‘the case is not to be approached as Pascal would have approached it.’19

A defendant could be regarded as knowing that death would probably result
even where the mathematical probability of death is relatively low: eg. if the
trigger was only pulled once (probability of discharge = 1/6).20

Prosecutor’s Fallacy

In a criminal case, a prosecutor presented evidence that the defendant’s blood
type matched that found at the crime scene. This blood type is only found
in 10% of the population. The prosecutor thus reasoned that there was a 10%
chance that the defendant would have this blood type if he were innocent,
and concluded that there was a 90% chance that the defendant was guilty as
charged.21

The flawed logic in the above scenario is an example of the prosecutor’s fal-
lacy, a term coined by Thompson and Schumann in 1987.22 Intuitively, the
prosecutor’s conclusion regarding the defendant’s likelihood of guilt cannot
be right, as it could be applied to any person with that blood type, all of whom
bar one would be innocent. To draw any conclusions about the defendant’s
guilt from the blood type match, it is necessary to take into account the a pri-
ori likelihood of guilt. If there is little other evidence pointing towards the
defendant’s guilt, a conviction based on the match is unsound.

For a more mathematical analysis of the fallacy, we can apply Bayes’ Theo-
rem. Suppose E = observed evidence (eg. the blood type match in the above
scenario), I = defendant is innocent, Ī = defendant is guilty, and P (E|I)23 is
small. The prosecutor’s fallacy assumes that if P (E|I) is small, then P (I|E)24

is correspondingly small. But, in fact, Bayes’ Theorem tells us:

19Ibid 547 (Brooking JA).
20Ibid 551.
21This scenario is taken from William C Thompson and Edward L Schumann, ‘Interpretation

of Statistical Evidence in Criminal Trials: The Prosecutor’s Fallacy and the Defense Attorneys
Fallacy’ (1987) 11 Law and Human Behaviour 167.

22Ibid.
23The probability that the evidence would be observed if the defendant were innocent.
24The probability that the defendant is innocent given the observed evidence.
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P (I|E) =
P (E|I) · P (I)

P (E)
=

P (E|I) · P (I)

P (E|I) · P (I) + P (E|Ī)P (Ī)

This means that if P(I)25 is much larger than P (E), then P (I|E) can also be
quite large. Returning to our blood type match example, if the other evidence
against the defendant is weak so that P (I) = 0.80, then:

P (I|E) =
0.1 × 0.8

0.1 × 0.8 + 1 × 0.2
=

2

7
≈ 0.29

As can be seen, there is quite a high probability that the defendant could be in-
nocent — a conviction in such circumstances would be worrying. Thompson
and Schumann’s experiments point to a real risk that a significant minority of
jury members could reason in accordance with the prosecutors fallacy, espe-
cially when only given P (E|I).26

An infamous and tragic example of the prosecutor’s fallacy at work is the
Sally Clark case.27 Clark was a British solicitor whose first son died suddenly
at 11 weeks old, and whose second son also died suddenly at 8 weeks old.
She was charged with two counts of murder. At her trial, the paediatrician
Sir Roy Meadow gave evidence that the probability of two children from an
affluent family dying of SIDS was 1 in 73 million; the figure was obtained
by squaring the probability of a single death from SIDS (1 in 8543).28 Clark
was subsequently convicted by a 10-2 majority verdict and sentenced to life
imprisonment.

Following her conviction, the Royal Statistical Society issued a press release
criticising Meadow’s statistical evidence.29 It noted that in simply squaring
the probability of a single SIDS death, Meadow had made an unfounded as-
sumption that SIDS deaths were independent events, when in fact genetic or
environmental factors can predispose families to SIDS. Further, the manner in

25The prior probability of innocence. This is an estimate of the defendant’s innocence on the
basis of the other evidence in the case (i.e. not including E).

26Thompson and Schumann, above n 21.
27Wikipedia, Sally Clark, http://en.wikipedia.org/wiki/Sally Clark.
28R v Clark [2003] EWCA Crim 1020, [96] http://www.bailii.org/ew/cases/EWCA/

Crim/2003/1020.html.
29Royal Statistical Society, ‘Royal Statistical Society Concerned by Issues Raised by Sally Clark

Case’ (Press Release, 23 October 2001).
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which Meadow presented his evidence may have led the jury into the pros-
ecutor’s fallacy. The RSS noted that some press reports had misinterpreted
the figure of 1 in 73 million to represent the probability that Sally Clark was
innocent; given the sensational nature of the figure,30 it is possible that jury
members also make this mistake. The RSS stated:

The jury needs to weigh up two competing explanations for the ba-
bies’ deaths: SIDS or murder. Two deaths by SIDS or two murders
are each quite unlikely, but one has apparently happened in this
case. What matters is the relative likelihood of the deaths under
each explanation, not just how unlikely they are under one expla-
nation (in this case SIDS, according to the evidence as presented.31

Clarks conviction was overturned in 2003, with the Court of Appeal stating
that Meadow’s statistical evidence ‘should never have been before the jury in
the way that it was when they considered their verdicts.’32 Clark was released
after three years in jail, but she did not recover from her ordeal and died of
accidental acute alcohol intoxication in March 2007.33

Another example of misuse of statistics in criminal trials to achieve conviction
is People v Collins.34 Here, witnesses to a robbery had observed certain char-
acteristics of the perpetrators (a Caucasian female and an African-American
male), each of which were possessed by the defendants. The prosecutor pre-
sented the following probabilities to the jury:

Yellow automobile 1/10
Man with moustache 1/4

Girl with ponytail 1/10
Girl with blond hair 1/3

African-American man with beard 1/10
Interracial couple in car 1/1000

The prosecutor proceeded to multiply all the probabilities together and con-
30Sir Roy Meadow likened the figure of 1 in 73 million to the chances of backing an 80-1 outsider

in the Grand National (an English horse race, like the Melbourne Cup) four years running, an
winning each time.

31Royal Statistical Society, above n 29.
32R v Clark [2003] EWCA Crim 1020, [177] http://www.bailii.org/ew/cases/EWCA/Crim/

2003/1020.html.
33‘Obituaries: Sally Clark’, The Times, 19 March 2007 http://www.timesonline.co.uk/tol/comment/

obituaries/article1533755.ece; ‘Alcohol Killed Mother Sally Clark’, BBC News, 7 November 2007
http://news.bbc.co.uk/2/hi/uk news/england/essex/7082411.stm.

34438 P 2d 33 (1968).
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clude that the chance of an innocent couple possessing all these incriminating
characteristics was one in 12 million; the jury convicted. It is not surprising
that the Supreme Court of California quashed the convictions on appeal; the
figures for the individual probabilities had little evidence to support them, the
prosecutor had erroneously assumed that each of the characteristics were in-
dependent, and the prosecutor’s fallacy is also likely to have reared its ugly
head.35

Defence Fallacy

At the other end of the spectrum to the prosecutor’s fallacy is the defence fal-
lacy. This is where members of the jury are persuaded that evidence of char-
acteristic matches (eg, the blood type match considered above) is irrelevant,
because the evidence merely shows that the defendant and the actual criminal
are members of the same group. For example, if (as above) we take the preva-
lence of a particular blood type found at the crime scene to be 10%, in a city
of 1 million people there would be 100,000 people who could be incriminated
by this evidence. Victims of the fallacy would not see any probative value in
the fact that the defendant and actual perpetrator both belong to such a large
group.

This conclusion is reasonable when there is no other evidence against the de-
fendant, but it becomes a fallacy when there are other indicators of the defen-
dant’s guilt. In the latter situation, the defence fallacy fails to recognise that
the blood type match drastically narrows the group of people who could be
suspects, while failing to exclude the defendant.

Thus, for example, if the other evidence in the case is sufficiently strong so
that the prior probability of innocence, P (I), is around 0.2,36 the additional
evidence of the blood type match can significantly increase the likelihood that
the defendant is guilty. Again applying Bayes’ Theorem, we have:

P (I|E) =
0.1 × 0.2

0.1 × 0.2 + 1 × 0.8
=

1

41
≈ 0.024

35For a more detailed discussion, see Michael O Finkelstein and William B Fairley, ‘A Bayesian
Approach to Identification Evidence’ (1970) 83 Harvard Law Review 489.

36While this is low, it would probably be insufficiently low to satisfy the ‘beyond reasonable
doubt’ standard of proof in criminal cases.
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Thompson and Schumann’s experiments suggest that jury members’ suscepti-
bility to the defence fallacy is even greater than in the case of the prosecutor’s
fallacy. In their second experiment, which was similar to the blood type match
scenario given here, 66% of the participants made one or more judgments con-
sistent with the defence fallacy.

Conclusion
[I]magine a law student approaching the study of the Constitution
for the first time ... He buys his law books, opens his notebook and
begins with a historical survey [of s 92]. ... The student [under-
standably] closes his notebook, sells his law books, and resolves to
take up some easy study, like nuclear physics or higher mathemat-
ics.37

Hopefully this article has shown that maths and law do intersect in some in-
teresting ways. The prosecutor’s fallacy and the defence fallacy suggest that
having lawyers who are comfortable with mathematics, especially statistics,
might assist the administration of justice. Sally Clark’s case serves as a potent
reminder that mixing inaccurate statistical reasoning with the law can result
in terrible consequences.

I’d like to conclude on a frivolous note by referring to the hilarious antics of
Theodore Rout, who in 2003 exhorted the High Court of Australia to exercise
its jurisdiction ‘to apply the law of mathematics and physics. . . to add, sub-
tract, divide and multiply.’38

Rout has a website39 on which he claims, amongst other things, to have shown
that 0

1 = 1
0 . Aggrieved at the lack of recognition given to him by the academic

community, Rout aired his grievances before two members of the High Court
in the form of an electoral petition against MP Bob McMullan. A theme run-
ning throughout Rout’s submission is a conspiracy regarding dividing and
multiplying by zero:

37Sir Robert Garran, Prosper the Commonwealth (1958) 413-15, cited by the High Court in Cole v
Whitfield (1988) 165 CLR 360.

38Transcript of Proceedings, Rout, An Application by C4/2002 (High Court of Australia, Kirby
and Heydon JJ, 14 March 2003) http://www.austlii.edu.au/au/other/hca/transcripts/2002/
C4/1.html.

39http://home.pacific.net.au/˜t rout/
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And the law is their set of dividing and multiplying by zero. As
long as they maintain their incorrect dividing and multiplying by
zero, then they enable me to cause things to cease to exist, and that
is why I have the power to do so. . .
Now, I have proven everything is on nothing so if everything is on
nothing and you multiply it by zero, then the entire universe and
the world does not exist. I have proven it conclusively.
[T]he High Court of Australia does have jurisdiction to apply adding,
subtracting, dividing and multiplying and I am asking the Court
to do precisely that, to subject them to their own dividing and mul-
tiplying by zero.40

Rout goes on to argue that, since 0
1 = 1

0 can be shown to imply that all num-
bers are equal, MP Bob McMullan’s election was fraudulous as he received no
more votes than any other candidate. No prizes for guessing whether Rout
succeeded.

— Julia Wang

Some Mathematical Anecdotes
1) Once Lord Kelvin used the word ’mathematician’ while lec-
turing and then, interrupting himself, asked his class: ’Do you
know what a mathematician is?’ Stepping to his blackboard he
wrote upon it:

∫ +∞

−∞
e−x2

dx =
√

π, and then turned to his class
and said, ’a mathematician is one to whom this is as obvious
as that twice two makes four is to you.’
2) In 1915 Emma Noether was invited by Hilbert and Klein to
join the maths department at the University of Göttingen. On
an objection by the Philosophy department she was denied a
formal place on the faculty, the argument being that a woman’s
place was not in the University Senate. Hilbert’s reaction was:
‘Gentlemen! There is nothing wrong with having a woman in
the Senate. The Senate is not a bath.’
3)Apparently at Harvard there was once a graduate Maths
course whose final consisted of just one line: ‘Make up an
appropriate final exam for this course and answer it. You will
be graded on both parts.’

40Ibid.
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Counter Revolutions

The Riemann hypothesis1 is often called the greatest and most important un-
solved problem in maths. And interestingly, despite resisting proof for so long,
the mathematical community holds near unanimous belief in its truth; to the
extent that there is a mountain of mathematical results which commence; ‘as-
suming that the Riemann hypothesis is true, then. . . ’. Over time, then, the
utter desperation to prove the result has both increased and diminished; in-
creased because a significant portion of modern mathematics is founded on
its truth, and diminished because such conviction in its truth renders a rigor-
ous proof almost superfluous.

But why this certainty? Well for one thing, as Terry Tao remarked when Para

dox posed this question to him,2 there is simply no reason for it to be false;
in fact we would be astounded if it was. Perhaps more persuasively, the re-
sult has been checked for the first 1013 Riemann-Zeta function zeros. In other
words, if there was a counterexample, it would have to be enormous!

Yet mathematical history is littered with famous counterexamples to conjec-
tures previously believed to be true. Even some of the greats, most notably
Fermat, have ended up with (posthumous) egg on their face, embarrassed by
counterexamples to their conjectures. When Fermat assumed that 22n

+ 1 was
prime for all integers n, little did he suspect that a hundred years later Euler
would demonstrate that 225

+ 1 = 641 × 6, 700, 417!

If a counterexample at n = 5 looks like carelessness, ones which emerge at
values much, much larger start to be really surprising. And when the math-
ematical community is convinced a result is true until one day a large coun-
terexample rudely interjects, you get true upheavals in mathematics.

The Prime Race

All primes aside from two take the form 4k + 1 or 4k + 3 for some integer k.
A natural question then is to ask which of these types are more common. As
there are infinitely many primes, a succinct way to state this is: for each n,

1In a nutshell, it is the statement that the complex roots of the Riemann-Zeta function all have
real part 1

2
. See http://en.wikipedia.org/wiki/Riemann hypothesis for more details.

2See the interview with Terry on page 12 of this edition.
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what is the relationship between π1(n), the number of primes less than n of
form 4k + 1, and π3(n), the number of primes less than n of form 4k + 3? This
question, the so-called Prime Race, was first described by Chebyshev in 1853,
who conjectured that π3(n) ≥ π1(n) for all n. Indeed, given the data below,3 it
is easy to see why.

n # of 4k + 1 # of 4k + 3
100 11 13
200 21 24
300 29 32
400 37 40
500 44 50
1000 80 87
2000 147 155
3000 211 218
5000 329 339
10000 609 619

100000 4783 4808

While Chebyshev may have been right almost all of the time,4 an exhaustive
check of the first 30,000 values of n shows that the race leader does in fact
swap, and so π1(n) > π3(n) for certain values of n. In fact, Littlewood in 1914
showed that the race leader swaps infinitely often! The reason that this was
not established sooner is that the first example of such a swap is at n = 26, 861,
a value far, far beyond what would be verified to get an intuitive belief in
the conjecture. Thus Chebyshev’s intuition was tripped up by a very large
counterexample; embarrassing, but he wouldn’t be the last.

Pólya’s Conjecture

Yet the counterexample in the Prime Race is mere child’s-play next to some of
the others. Sure, verifying up to 27,000 may be tedious if done by hand, but in
the age of the computer such a counterexample would be found in an instant.
Much, much worse was to come. . .

3http://www.dms.umontreal.ca/˜andrew/PDF/PrimeRace.pdf.
4Indeed it is still an open conjecture as to whether the proportion of time that we have π3(n) ≥

π1(n) tends to 1 as n → ∞.
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In 1919, Pólya was considering whether numbers had an odd or an even num-
ber of prime factors when written out in their full prime factorisation. For
example, 6 = 2 × 3 has an even number of factors, whereas 18 = 2 × 3 × 3
has an odd number. By defining O(n), the number of positive integers less
than n with an odd number of prime factors, and E(n), the number of positive
integers less than n with an even number of prime factors, Pólya initiated his
own version of a ‘race’, and conjectured that O(n) ≥ E(n) for all n > 2.

Knowing the history of the Prime Race, it is a fair bet that Pólya took the time
to check his conjecture for many early values of n, perhaps even as far as sev-
eral hundred thousand or more. Unfortunately for Pólya and his computation,
the lowest is at a whopping n = 906, 150, 257. No wonder it took mathemati-
cians 61 years to find it!

But it gets worse. . .

The mother of all large counterexamples has an even more turbulent history.
For, although we know a counterexample must exist, and although we know
it must exist within a certain bound, this bound is so unfathomably enormous
that no-one has yet found an explicit counterexample! It is proof by counterex-
ample without an explicit construction!

This counterexample relates to one of the most important results on the primes
of all, the Prime Number Theorem, which can be stated: The number of primes
less than n, denoted π(n), is asymptotically approximated by Li(n) =

∫ n

2
1

log(t)dt.
While this theorem was proved in 1896, what was not certain was whether
Li(n) > π(n) for all n, as appeared to be the case. Though this result held
for all values of n physically checked, and though it had been proved that
Li(n) − π(n) should be roughly growing as n got larger, in 1914 Littlewood
managed to prove that Li(n) couldn’t possibly be always greater than π(n).
Yet he was unable to demonstrate what this counterexample was, or how large
we should expect it to be.

Enter Skewes, a student of Littlewood, who set about trying to discover an
upper bound for this counterexample. After several false attempts, includ-
ing one that assumed the truth of the Riemann Hypothesis, he finally came
up in 1955 with the infamous Skewes’ number; 101010

963

, a number so utterly
enormous that a comparison with anything in observable life becomes mean-
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ingless. Sufficient to note that, whereas a googleplex = 1010100 , is already larger
than the number of elementary particles in the universe, even 10googleplex is
insignificant when compared to Skewes’ number. Aside from the ridiculously
enormous Graham’s number, it remains the largest number ever used in a
mainstream mathematical proof.

Fortunately for those wanting to construct an explicit counterexample, the up-
per bound has been greater reduced. The most recent result puts it at less than
1.4 × 10316, still larger than the number of particles in the universe, but at
least within the same ballpark! Perhaps more surprisingly, it has been sug-
gested that the first counterexample lies at around 1.397 × 10316, though this
is unproven. The search for the elusive counterexample goes on, though if the
value is indeed this large then we should not be holding our breath.

So is the Riemann hypothesis on shaky ground?

What becomes obvious from the examples above is that there are many false
statements for which the first counterexample is utterly enormous to the point
of being undiscoverable. Thus the nominal evidence for the Riemann conjec-
ture, that the first 1013 zeros satisfy the conjecture, is really no evidence at all.

Moreover, these examples all related to the behaviour of the primes, and are
indicative of their unruly and unpredictable behaviour. Similarly, the Rie-
mann hypothesis is inextricably linked to the distribution of the primes, and
so these examples are particularly pertinent when asserting the truth of this
famous hypothesis.

But perhaps the most damning counterexample of them all was the disproof
of the Merten’s conjecture in 1985 after almost a hundred years of speculation
that it was true. This conjecture is similar to Pólya’s conjecture in considering
whether numbers have an odd or even number of prime factors. The key
difference is that, whereas n still ranges over all the natural numbers, for the
purposes of our running sums we only count numbers that are square-free,
and discard numbers that are not. Using the notation from above, Merten’s
conjecture states that |O(n) − E(n)| ≥ √

n for all n.

Despite this conjecture being true for at least the first 1014 values of n, it has
nevertheless been shown that a counterexample must exist. Once more, this
counterexample is so enormous that it has not yet been found explicitly. All
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we know is that lies somewhere less than 1041.

The importance of this counterexample for the purposes of the Riemann hy-
pothesis extends beyond a mere warning that large counterexamples can and
do exist. More critically, Merten’s conjecture logically implies the Riemann
Hypothesis, in other words, had Merten’s conjecture been true, the Riemann
hypothesis would have been true as well. While patently the converse impli-
cation does not follow, this is nevertheless a clear warning that the Riemann
hypothesis may too, one day, fall to a large counterexample. Whether that
counterexample is the 1030th zero, the 10googleplexth zero, or at a zero even
larger, until the result is proven once and for all we simply cannot rule out
that such a counterexample exists.

In conclusion, while it may be currently popular to assert that the Riemann
hypothesis is definitely true, maybe it would be wise to take heed of Karl
Marx: the revolution may well be coming.

— Stephen Muirhead

Postscript: Are you a revolutionary?
In light of the above, if you have ever felt the pressing need to prove one of
the great unsolved conjectures, but are not sure your mathematics ability is
quite up to it, finding a counterexample to an unsolved conjecture is a sure-
fire way to get into the record books. And the task could be easier than you
think. Consider;

Given any whole number n, perform the following iteration.
1. • If n is even, replace n with n

2 .
• If n is odd, replace n with 3n + 1.

2. Repeat.
Does this iteration always eventually reach the value of 1?

This is the famous 3n + 1 conjecture,5 first proposed in 1937. Though this
conjecture is widely believed to be true, and has been verified for n < 1018, it
would only take one value of n to start cycling for it to be proved false. And,
best of all, anyone who can multiply by 3 and divide by 2 can join the fun.
Posterity awaits. . .

5It is also known as the Collatz conjecture.
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Uncovering a Track to Mt Solution

When asked what it was like to set about proving something, the
mathematician likened proving a theorem to seeing the peak of a
mountain and trying to climb to the top. One establishes a base
camp and begins scaling the mountain’s sheer face, encountering
obstacles at every turn, often retracing one’s steps and struggling
every foot of the journey. Finally when the top is reached, one
stands examining the peak, taking in the view of the surrounding
countryside and then noting the automobile road up the other side!

— Robert J. Kleinhenz

We have a habit in writing articles in scientific journals to make the
work as finished as possible, to cover up all the tracks, to not worry
about the blind alleys or describe how you had the wrong idea
first, and so on. So there isn’t any place to publish, in a dignified
manner, what you actually did in order to get to do the work.

— Richard Feynman, American physicist, Nobel Lecture, 1966.

Background story

In the last issue of Paradox, I noticed the article entitled Don’t trust your in-
stincts, where the starting premise was the following question; what comes
next in the sequence 1, 2, 4, 8, 16? Just arrived in Melbourne, I was surprised
that the very same question was raised during a month spent in a middle of
nowhere in Slovenia.

We were having a discussion on the merits of an IQ test, which involves asking
similar questions. It was pointed out that the next number in that sequence can
be anything, and the first example used to demonstrate that the answer is not
necessary 32 was the following construction:

Start with a circle drawn on a piece of paper with n vertices on
it. Now, connect all pairs of vertices with a line. Let A(n) be the
maximal number of regions inside the circle formed by n vertices.
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It should be noted that A = 1, 2, 4, 8, 16, 31 for n = 1, 2, 3, 4, 5, 6. The question
is what comes next in the sequence? This prompted an unfriendly competition
between me and another maths student, which I lost.

This article is about how I went about solving the problem.

My route to the solution

In a quest to find an explicit formulae, I did some calculations for n = 7, 8, 9, 10.
Due to limitation on paper space, this wasn’t very helpful. I simply couldn’t
draw as accurately as I would have liked. But the benefit of doing this was
that it gave me some numbers to work with (even though some were just
plain wrong!). I gained a little insight, and quickly concluded that induction
will not work. I simply had to directly calculate it.

Having seen a few numbers and more importantly having seen a few dia-
grams, I began to think of the situation as a graph. This was after about 30
minutes of staring at diagrams. It then occurred to me that I can calculate
A(n) by using the well-known Euler characteristic

1 = V − E + F,

where V, E, and F are numbers of vertices, edges and faces respectively. Here,
Terry Tao gives good advice on his blog;1 subdivide your problem into man-
ageable pieces. So, I formed a strategy in my head:

Step 1: find a pattern for V ;
Step 2: calculate E;
Step 3: use Euler’s characteristic to find F .

Step 1

I knew from the start that this step would be the most difficult, since I had
some idea for step 2 and a very clear idea for step 3. But this was where the
process of drawing diagrams really helped.

1http://terrytao.wordpress.com/.



Page 38 Issue 3, 2009 Paradox

I started with a circle and a vertex. Obviously, there is no line
drawn. Then I added another vertex on the circle and joined a
line to the one already drawn. I repeated this process a few times
(until n = 10).

This process made me realise that I should consider the ‘local’ viewpoint. This
is what I mean; fixing n and a vertex v on a circle, I wanted to consider all lines
that end at that vertex. The idea was to count the number of intersections
with these lines. I then would use the fact that if I multiplied this number
by n corresponding to a number of vertices on the circle, I would count each
intersection four times. I would then only have to divide the number by 4 to
get the total number of intersections, then add n to get V .

Each vertex on the circle has n − 1 lines coming out, so for convenient, I will
name each l1, . . . , ln−1, each joining v and vi, as shown on the diagram. The
number of intersections with line li will be denoted as Ii. So, I had the follow-
ing data to work with:

n I1 I2 I3 I4 I5 I6 I7 I8

∑

3 0 0 0
4 0 1 0 1
5 0 2 2 0 4
6 0 3 4 3 0 10
7 0 4 6 6 4 0 20
8 0 5 8 9 8 5 0 35
9 0 6 10 12 12 10 6 0 56
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Well, not exactly. I didn’t draw very well, and therefore for n ≥ 8 it was hard
to be sure if I had the right numbers. Nevertheless, the first thing I noticed
was, for all n;

• I1 = In−1 = 0;
• I2 = In−2 = n − 3;
• Ik = In−k for all 1 ≤ k ≤ n.

Now, for many including me, this reminds you of Pascal’s triangle. But from
a simple check, one can see that it is not exactly Pascal’s triangle, as In

k 6=
In−1
k−1 + In−1

k + const. So, I went back to basics and thought about how these
intersections were being formed. After about 20 minutes I had an another
insight. I noticed that each line lk divides the disc into two regions, say Lk and
Rk for a region on the left and one on the right. Any line that intersects this line
lk must therefore connect two vertices, one from each region. There are k − 1
vertices in Lk, and n−k− 1 vertices in Rk. So, there must be (k− 1)(n−k− 1)
lines that intersect lk. Assuming that no three lines intersect at one vertex, each
line corresponds uniquely to an intersection on lk. A simply check against the
data verified that I was on the right track.

So now, the number of intersections with lk is the sum of all the Ik’s;
n−1∑

k=1

Ik =

n−1∑

k=1

(k − 1)(n − k − 1) =

n−1∑

k=1

(k − 1)((n − 2) − (k − 1))

=

n−2∑

k=0

k((n − 2) − k) = (n − 2)

n−3∑

k=1

k −
n−3∑

k=1

k2

=
1

6
(n − 3)(n − 2)(n − 1).

So the total number of intersections is

n × 1

6
(n − 3)(n − 2)(n − 1) × 1

4
=

1

24
n(n − 1)(n − 2)(n − 3).

Therefore, V = n + 1
24n(n − 1)(n − 2)(n − 3).

Step 2

To calculate a number of edges E, I used the fact that each intersection has
four edges connecting to it, and each vertex on the circle has n − 1 + 2 edges
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connecting to it (including the circle). But then I would have counted each
edge twice, so I need to divide the number by 2. So, we have

E =
1

2
((n + 1) × # vertices on the circles + 4 × # intersections)

=
1

2
n(n + 1) +

1

12
n(n − 1)(n − 2)(n − 3).

Step 3

Finally, combine all the data together, we get
A(n) = F = 1 + E − V

= 1 +
1

2
n(n − 1) +

1

24
n(n − 1)(n − 2)(n − 3).

Final comment
In summary, the process of solving mathematical problem is often non-linear.
In this case, I made several fruitless attempts. But a few lessons can be learnt
from this:

1. It is a good start to play around with a problem. This allows you to get
a feel for it, or at least some numbers to make a hypothesis.

2. You should form a solving strategy or break the problem into smaller
pieces.

3. When stuck, always goes back to the basics. This is why problems should
be understood at a fundamental level.

In this example, I had knowledge of the answer, but in research this is not
always the case. So, the second lesson is particularly useful, when it is applied
to research. Finally, there are always more questions to be solved:

Consider a sphere with n vertices on it. For every three vertices,
form the plane which divides the ball into two regions. Let R(n) be
the maximal number of regions formed by the above construction.
If this problem is not hard enough, what is R(n) in d-dimensions?

— Tharatorn Supasiti
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Solutions to Problems from Last Edition

We had a number of correct solutions to the problems from last issue. Below
are the prize winners. The prize money may be collected from the MUMS
room (G24) in the Richard Berry Building.

Carol Badre solved problem 4 and may collect $3.

Brendan Duong solved problem 5 and may collect $3.

Andrew Conway solved problem 7 and may collect $5.

David Wakeham solved problems 1, 4, 5 and may collect $8.

Natalie Aisbett solved all the problems and may collect $15.

1. In a round robin tournament involving n teams, where every team plays
each other exactly once, show that

∑
k(wk)2 =

∑
k (lk)2, where wk = the

number of wins that team k collects and lk = the number of losses that
team k collects.
Solution: Firstly for each k we have wk + lk = n − 1. Also, each game
contributes exactly once to

∑
wk and to

∑
lk, so

∑
wk =

∑
lk, or equiv-

alently
∑

(wk − lk) = 0. Now,
∑

(wk)2 =
∑

(lk)2 ⇔ ∑
(wk)2−∑

(lk)2 =
0 ⇔ ∑

(wk)2 − (lk)2 = 0 ⇔ ∑
(wk + lk) · (wk − lk) = 0 ⇔ (n−1).

∑
(wk−

lk) = 0 ⇔ ∑
(wk − lk) = 0.

2. Draw n straight lines in a plane such that no three intersect. Show that
the resulting regions can be 2-coloured, that is, coloured in one of two
colours such that no two bordering regions share the same colour.
Solution: We prove the result by induction. For n = 0 we can 2-colour
the plane trivially. Consider a plane with n lines. Pick one line, re-
move it, and use the inductive assumption to 2-colour the plane that
results. The nth line then divides the plane into two halves, both halves
2-coloured correctly but with regions bordering along the line having
identical colours. To correct this simply invert the 2-colouring in one
half of the plane.

3. n real numbers are written on the board. Each turn two numbers a and
b are erased and replaced with a + b

2 and b − a
2 . Can the set of original

numbers every be regained?
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Solution: Let si be the sum of the squares of all numbers written on the
board after i turns. For any turn, si+1−si = (a+ b

2)2+(b− a
2 )2−a2−b2 =

ab
2 + b2

4 − ab
2 + a2

2 = a2+b2

4 > 0. Thus si is strictly increasing, and so the
set of original numbers can never be recovered.

4. Four points A,B,C and D lie on a circle radius r such that AB = CD =√
2r, BC = 6 and AD = 8. Find r.

Solution: Let O be the centre of the circle. Notice that triangles AOB

and COB are right-angled. Next, consider the quadrilateral as being
composed of the four triangles ∆AOB, ∆BOC, ∆COD and ∆DOA, and
construct a new quadrilateral by switching the positions of ∆COD and
∆BOC. This new quadrilateral has side lengths of (

√
2r,

√
2r, 6, 8), and

also has a diagonal passing through O. Using the 90 degree angle this
diagonal subtends at the circumference, we know 62 + 82 = r2, thus
r = 10.

5. On an nxn chess-board we infect n − 1 of the squares. Each minute the
infection will spread to a non-empty square if at least two of its four
direct neighbours are already infected. Could the infection eventually
spread to cover the whole board?
Solution: Let P be the perimeter of the set of infected squares. Consider
the four rotationally distinct ways in which a non-infected square can be
infected. In each case at least two edges are removed from the perimeter
of the set of infected squares, and at most two edges are added to it.
Hence P cannot increase as a result of new infections. A completely
infected board implies P = 4n, yet the largest initial P possible is 4(n −
1). Hence the infection can never completely cover the board.

6. A triangle ABC has P on AB, Q on BC and R on AC such that ∆PQR is
equilateral. Also, AP = BQ = CR. Prove that ∆ABC is equilateral.
Solution: Let the triangle be labelled using a, b, c, A, B, C notation, let
AP = BQ = CR = s, PQ = QR = RP = 1, and let ∠BPQ = x,
∠CQR = y and ∠ARP = z. Without loss of generality we have two
cases; a ≥ b ≥ c or a ≥ c ≥ b. In the first case we have ∠A ≥ ∠B ≥ ∠C,
but we also have, looking in ∆CQR, y + C = 60 + z. Similarly z + A =
60+x and x+B = 60+y Together these imply that x−z ≥ y−x ≥ z−y ⇒
2x ≥ y +z, 2y ≥ x+z ⇒ z = min {x, y, z}. But by the sine rule in ∆CQR

we have s
sin y

= 1
sin C

. Similarly, s
sin z

= 1
sin A

. Now if we assume that
A > C then also we have sinA > sin C, and so by the previous statement
we have sin z > sin y, contradicting the fact that z ≤ y. Therefore A = C.
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Similarly, for case two we show that x = max {x, y, z} which leads to the
same contradiction when using the sine rule. Thus A = B = C in both
cases, and so the triangle is equilateral.

7. MUMS-land contains a thousand cities and possesses a dirt-road net-
work such that a person at any city can get to any other city along them.
The king of MUMS-land, Han, decides to pave some of the roads. Show
that it’s possible to pave some of these roads in such a way that every
city is connected to an odd number of paved roads.
Solution: Consider the original road network as a connected graph on
1000 vertices. Let the ‘paved degree’ of a vertex be the number of paved
edges at this vertex. Define n to be the number of vertices with an even
paved degree. Now, as each paved edge contributes one to the paved de-
gree of precisely two vertices, we know

∑
vertices(paved degree) is even.

Since there are 1000 vertices we deduce that n is even. Now, if n = 0 we
have solved the problem. If n 6= 0, pick any two of the vertices with even
paved degree and choose a path on the original graph between them. In-
vert every edge on this path. The paved degree of every vertex remains
constant except the two end-points, whose paved degree reduces by one.
Thus, n is reduced by exactly 2. Repeat this operation as many times as
required until n is reduced to 0.
Alternative solution (from Andrew Conway): Define P (n) to be the propo-
sition that any connected graph on n points S can be paved such that, if n

is even, each point has odd paved degree, and if n is odd, precisely n− 1
points have an odd paved degree, with the single point being any of our
choosing. We prove P (1000) by induction. P (1) is clearly true. For n

even, choose a point R, and let S = R + S1 + S2 + . . . + Sk where each
disjoint set Si is connected internally, but not connected to any other Si

other than via R. Now, each of the Si sets of even size can be coloured
correctly by the inductive assumption. Moreover, as there are an odd
number of Si sets of odd size, if we colour an edge from R to each of
these sets then each of the Si with odd size can be coloured correctly
also. Finally, R has odd paved degree by construction. For n odd we
perform the same operation choosing R to be the vertex we wish to have
even paved degree. In this case there will be an even number of odd size
sets, and again we pave from R to each of them.
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Paradox Problems

Below are some puzzles and problems for which cash prizes are awarded.
Anyone who submits a clear and elegant solution may claim the indicated
amount (up to a maximum of four cash prizes per person). Either email the
solution to the editor (see inside front cover for address) or drop a hard copy
into the MUMS room (G24) in the Richard Berry Building; please include your
name.

1. ($1) What is the minimum number of snaps needed to break a nxm choco-
late bar into individual pieces, assuming that a snap cannot act on two
disconnected portions of the chocolate bar at the same time?

2. ($2) Let a, b, c be distinct integers, and let P be a polynomial having in-
teger coefficients. Show that it is impossible to have P (a) = b, P (b) = c,
and P (c) = a.

3. ($3) Consider an nxnxn cube as built from n3 basic 1x1x1 cubes. Let a
2x2x2 cube with one basic cube missing be called a block. Prove that a
2nx2nx2n cube with any basic cube removed (including in the interior)
can be constructed entirely from blocks.

4. ($3) Prove that x2 + 3 = 4y(y − 1) has no solutions in the integers.

5. ($4) Each square of a 8x8 grid contains either a 1 or a 0. On this grid, you
may choose any 3x3 or 4x4 subgrid to invert (swap all 0s to 1s, and all
1s to 0s). Using this operation repeatedly, can you always remove all the
ones from the grid?

6. ($4) Find the smallest n such that given any n distinct integers one can
always find 4 different integers a, b, c, d such that a+ b− c−d is divisible
by 20.

7. ($5) Prove that
∑∞

n=1
1

(n+1)
√

n
< 2.
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