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The polynomial 4x* — 2x + 41 gener-
ates a very interesting Ulam spiral.
Find out more on page 6!
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solved one.

A physicist and a mathematician are sitting in a faculty lounge.
Suddenly, the coffee machine catches on fire. The physicist
grabs a bucket and leap towards the sink, filled the bucket with
water and puts out the fire. The next day, the same two sit in
the same lounge. Again, the coffee machine catches on fire.
This time, the mathematician stands up, gets a bucket, hands
it to the physicist, thus reducing the problem to a previously
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Words from the Editor

Welcome to this year’s fourth issue of Paradox, the magazine produced by
the Melbourne University Mathematics and Statistics Society (MUMS). This
is the first regular issue since the new committee has been elected, but the
radical Editor remains!

Every issue this year has been radically different in some way, and this School
Maths Olympics (SMO) and Open Day issue is no different. The regular
features have all taken a break this time around, and three Presidents past
and present have stepped in to fill the void instead. Hence, it is only fitting
to tribute this issue to the Presidents of MUMS. Without your steady hands,
MUMS (and Paradox) would be lucky to survive, right?

Anyway, in this edition you will discover how mathematics toys with chess
and why drawing during boring presentations might have profound impli-
cations someday. Otherwise, exercise your mind trying to use the modern
notion of statistical significance in a not-so-modern situation or go on a brief
Pythagorean journey that might whet your appetite for more!

Paradox thanks all contributors for providing so much material over the past
year and encourages everyone to continue submitting articles, puzzles, re-
views, and all-important jokes. Just ask about Paradox in the MUMS room
or contact us via email (see page 2). Be prepared for quite a few surprises
and comebacks in record issue number 5!

Yours radically,
Kristijan Jovanoski
Paradox Editor
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Words from the President

Welcome all to Paradox! As we wander through another Open Day, SMO,
and into a second third of a second semester, we reminisce on our fellow
MUMSians who have left us for brighter futures. Some, off into the brave
world of actual careers, others off to universities abroad. One certainly can’t
say that maths doesn’t get you places.

Back here at the MUMS room, the new MUMS year (AGM to AGM) is going
mathemagically. Seminars have been going very well (many thanks to our Ed-
ucation Officer Dougal) with many new students joining our inner sanctum
within the walls of the MUMS room. Everyone is welcome, especially you!
In other news, we’ve reinstated the old tradition of having in-depth lecture
series, and our overseas-bound Sam is kicking things off with three weeks on
number theory. Look forward to more of these throughout the semester and
into the new year.

For now, enjoy whatever it is you are currently doing. Whether that be Open
Daying, Semestering or discovering this Paradox in an old bag long since
discarded. And remember, maths is awesome (see further in this Paradox
for examples thereof.)

Yours presidentially,
Giles "Da Prez" Adams
MUMS President

A~
\/

math puns are the first
QINE OF MADNESS
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The Ulam Spiral

The Ulam spiral is a method of visualizing the prime numbers that shows the
apparent tendency of certain quadratic polynomials to generate unusually
large numbers of primes. It was discovered by Stanistaw Utam in 1963 while
doodling during the presentation of a long and boring paper. He constructed
the spiral by writing down a regular rectangular grid of numbers, starting
with 1 at the centre, and spiralling out:

37—36—35—34—33—32-31

3|8 1|7—16—15—14—1|3 3|O
39 18 5—4—3 12 29

] -
40 19 6 1—2 11 28

] |
41 20 7—8—9—10 27
42 21-22-23-24-25-26

43—44—45—-46—47—-48—-49...

He then circled all of the primes to get this picture, discovering that the prime
numbers tended to lie on some diagonals more than others:

37 31
17————-13
5 3 29
19 —|2 11
41 7
23
43 47

Later Utam used the first-generation electronic computer MANIAC 1II at Los
Alamos Scientific Laboratory with collaborators Myron Stein and Mark Wells
to produce pictures of the spiral for numbers up to 65,000.

Almost all of the prime numbers lie on alternating diagonals, since all except
the number 2 are odd. Note that the difference between rows or columns
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Figure 1: 200 x 200 Ulam spiral.

going towards the outside is always odd, but if we then move one along the
spiral, we can see that the difference is always even. This corresponds to
alternating diagonals giving only odd or even numbers. We can see some of
these patterns in Figure ??.

The pattern of lines imply that there are many quadratic polynomials of the
form
f(n) =4n*+bn+c

where b,c € Z and n € IN.! Since these are the equations for numbers along
lines emanating from the central area in the Ulam spiral, with b odd for lines
at a 45° angle to the horizontal, and b even for vertical and horizontal lines.2

Why is it interesting? First, not much has actually been discovered about the
Ulam spiral. The reason why the prime numbers align diagonally while non-
prime numbers align horizontally and vertically is not clear yet. Nonethe-
less, the spiral is important primarily because it shows a clear pattern among
prime numbers, even when the number at the centre is not 1.

Hardy and Littlewood’s Conjecture F

Many decades earlier in 1923, Hardy and Littlewood stated a conjecture, that,
if true, may explain many of the striking properties of the Ulam spiral. Their
Conjecture F concerns polynomials of the form ax? + bx + ¢ where a, b, c are
integers and a is positive. It states that if 4,b,c contain a common factor
greater than 1 or if the discriminant A = b? — 4ac is a perfect square, then the
polynomial factorises and produces composite numbers for almost all x € IN,
and if a4 + b and c are both even, the polynomial will produce only even

!That is, b and c are whole numbers (integers) and 7 is a whole number greater than 0.
2This actually implies the result in footnote 1.
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numbers. Otherwise, such a polynomial gives infinitely many prime values
for x € IN.

Furthermore, they conjecture that the number P(n) of primes, asymptoti-
cally,3 of the form ax? + bx + ¢ less than 7 is given by

1 Vn
Pln) ~ A%logn

where

A=< (21055 (3))

Where the first product (] symbol) p is a prime number dividing both a and
b2, in the second product, @ is an odd prime number not dividing a4, ¢ is

defined to be 1 if a + b is odd, and 2 if a + b is even, A is the discriminant,
and (%) is a special multiplicative function known as the Legendre symbol.
A basic explanation of this formula would be that in the case where A =1,
we get via the prime number theorem the asymptotic number of primes less
than n expected in a random sample of numbers having the same density as
those of the form ax? + bx + c. But A can take on values greater or smaller
than 1, so the lines apparent in Ulam’s spiral correspond to the polynomials
where A is significantly higher than 1.

For example, the polynomial 4x%2 — 2x + 41 has a value for A of about 6.6,
meaning that it generates about 6.6 times as many prime numbers as you
would get if you just looked at random numbers of comparable size. It is
unusually rich in primes and generates a visible line in the Ulam spiral which
graces the cover of this issue of Paradox.

Finally, it might seem that diagonal lines can be seen in the Ulam spiral sim-
ply because our eyes seek patterns and groups even among random clusters
of dots. However, a quick comparison between Figures ?? and ?? on the next
page will put this matter to rest:

3That is, the limit as n approaches infinity.

‘E.g., ifa =12 and b = 6, then I, (%) = ﬁ : 3%1 = 3. That is, we multiply together the
expression following [] for all possible values of p.

°A thorough explanation of this function has been omitted for the sake of simplicity.
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Figure 2: A spiral where the black dots denote prime numbers.

Figure 3: A spiral of random numbers.

If the Ulam spiral with prime numbers one day provides us with enough in-
formation for the discovery of a new polynomial that can generate even more
prime numbers than the ones we already know, then we might have a bet-
ter understanding of other mysterious conjectures involving prime numbers,
such as the prime conjecture and Goldbach’s conjecture, but that’s another
story...

— Mel Chen

The reason that every major university maintains a department
of mathematics is that it is cheaper to do this than to institution-
alize all those people.
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How Mathematics Changed the Rules of Chess

Can a game of chess have infinitely many moves?

In 1935, Max Euwe defeated Alexander Alekhine to become World Chess
Champion. Amazingly, he was only a part-time chess player.! Euwe com-
pleted a doctorate in mathematics at the University of Amsterdam in 1926.2
In 1929, he published a paper answering the above question in the affirma-
tive! The relevant rule at the time was as follows:

A player may claim a draw if the same sequence of moves occurs
twice in succession and is immediately followed by the first move
of a third repetition.

Many people believed that this rule made the game of chess finite, but this
was not the case. Euwe’s idea was to use the following sequences of knight
moves over and over in some order:

1See Max Euwe: The Biography, by Alexander Miinninghoff.
2His doctoral research was in differential geometry.
3This is a summary of the description given in a lecture by Jeffrey Shallit, The Ubiquitous Thue-



Paradox Issue 4, 2012 Page 11

0 Nf3 Nf6
Ngl Ng8
and
1— Nc3 Nc6
Nbl NbS.

Euwe wondered if he could find a sequence of 0s and 1s with the property of
being overlap-free, i.e., there does not exist a subword (substring of 0Os and 1s)
of the form axaxa, where a is a letter (0 or 1) and x is a (possibly empty) word.
If so, then it would correspond to an infinite chess game under the above map.
Thus, Euwe independently discovered the Thue-Morse sequence.*

The Thue-Morse sequence

The Thue-Morse sequence is a sequence t such that if n € Z> then

e tr, = t,, and

® trp1=1—1ty.

It looks like
t =0110100110010110....

Some equivalent definitions are:

Morse Sequence, found at http://www.cs.uwaterloo.ca/~shallit/Talks/green3.pdf.
4Tt was originally discovered by Eugene Prouhet (who applied it to number theory) in 1851,
but Prouhet’s work went largely unnoticed for a long time. Consequently, several mathemati-
cians independently discovered the sequence in different contexts. See http://homepages.
fh-friedberg.de/boergens/english/problems/problem059%9engl.htm.



Page 12 Issue 4, 2012 Paradox

1. t =lim, . X;;, where Xy = 0 and
Xn+1 = XYIX_H/
where the bar denotes swapping the 0Os and 1s in a word.

2. ty = sp(n) mod 2, where s (n) is the sum of digits of n when # is written
in base 2.

These are merely stated for curiosity, as we only need the initial definition.
The first alternative definition tells you how to actually write down the se-
quence, while the second tells you how to get one term in the sequence with-
out having to figure out all of the previous ones.

Proof®

So how do we show that the Thue-Morse sequence is overlap-free? Assume,
for the sake of contradiction, that there is a subword of the form axaxa, where
a is a letter and x is a word. Then we can write

t = uaxaxao,

where u and v are words (v is infinite). The overlap condition is then equiva-
lent to

tk+] = tk_|_j+m for ] = O, 1, co.,m, (1)

where m = |ax| and k = |u|. Consider this for an overlap axaxa such that m
is minimal.® Note that m > 1, since t,,, # trn+1 for n € Z>y.

e Case 1: m is even. Let m = 2m’. We will find a smaller overlap, contra-
dicting the minimality of m.

— Case la: k is even. Let k = 2k’. We use the fact that ty,, = t, for
n € Z>o:
tk+j = tk+j—|—m for ] — O, 1, ..., m, (2)
SO
t2k’—|—2j’ = t2k’+2j’—|—2m’ for j, = O, 1, ceey m’, (3)

°This is again from Shallit’s lecture.
6By the well-ordering principle, if it is not obvious that such a thing exists. This is an example
of a proof by infinite descent.
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SO

tk’—|—j’ = tk’+j/—|—m/ for j/ = O, 1, ce ,m’, (4)

which is a smaller overlap as m’ < m.

— Case 1b: kis odd. Let k = 2k’ + 1, and proceed in a similar fashion.
e Case 2: mis odd. As m > 1, we either have m > 5 or m = 3.

— Case 2a: m > 5. Choose j such that 1 <j <4 and k+j = 2 (mod
4). Observe that

berj + tietj-1 = terjim + bt jrm-1 =1, ©)

since
tevjom =1 = tagjom—1)2 =1 = b jrm—1, (6)

so we get a contradiction once we show that terj = thtj—1- One
way to see this’ is

bevjo1 =1 = tayj0)2 = V= tij2)/a = L) 2 = teje - ()
— Case 2b: m = 3. Choose jsuchthat1 <j<3andk+j=2o0r3

(mod 4). If k +j = 2 (mod 4) then we get a contradiction as in the
previous case. If k 4 j = 3 (mod 4) then consider

bej + terjo1 = treyjes T tejao (8)

The right hand side is even (the same as the left hand side in case
2a), while the left hand side is 1 since

berj =1 —=tpqj—1y2 =1 = tegj1. )

Contradiction.

Hence, the Thue-Morse sequence is overlap-free, so the corresponding game
of chess was infinite, under the rules of the day.

7Tt is also immediate from the second alternative definition of the Thue-Morse sequence.
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Subsequent developments

There is something unsettling about the possibility of a game having infinitely
many moves, even if it is never going to happen in practice. The rules were
reformulated several times during the 19th and 20th centuries, but the current
statement of the threefold repetition rule is as follows:

A player may claim a draw if the same position occurs for the
third time.

This takes into account the eligibility status of castling and en passant. The
number of possible positions is easy to bound, which now bounds the length
of a game.

There are 13%* ways to put pieces on the board; here 13 = 2% 6 + 1 takes
into account 6 types of pieces and 2 colours, as well as the possibility of no
piece being on the square. There are 2° combinations of long-term castling
eligibility (depending on whether or not each king or rook has been moved),
and at most 22(2+2+6) — 228 combinations of long-term en passant eligibility.
We also multiply by two because it could be white to move or black to move.
Thus, C = 2% % 13% is an upper bound on the number of chess positions.
By the pigeonhole principle, threefold repetition must be achieved within 2C
ply (a ply is a move for white or black; the starting position is attained after
0 ply), which is C moves (for each side), provided that someone claims the

draw when they are allowed to!

Euwe continued teaching mathematics at schools and universities, and be-
came a professor at Tilburg University in 1964. He wrote over seventy chess
books, presided over FIDE (the world chess federation) as President from
1970 to 1978, and was also involved in the development of computer science.

— Sam Chow

In a park people come across a man playing chess against a
dog. Astonished, they say: “What a clever dog!"

But the man protests: "No, he isn’t that clever, I'm leading three
games to one!"

8This bound is lowered significantly using the 50-move rule: a player may claim a draw if at
least 50 consecutive moves have been made by each side without the capture of any piece or the
movement of any pawn.
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Pythagorean Triples

Triples of the Pythagorean kind are such well-known beasts that giving this
article any other name besides the boring straightforward one just seems
plain wrong. And yet, there are questions one can ask that lead to interesting
answers; questions you will find below. So let’s start at the natural start.

Fermat’s Last Theorem states that there are no integer solutions (a,b,c) to
a" +b" = c" for n > 2. But what about n = 2? Well. ..

Theorem
There is an integer solution (a,b,c) to a®> + b> = c?. That is, there exists a
Pythagorean triple.

Proof
32 +42 =52,

So great, there is one solution. But are there more? Actually, yes.

Let (a,b, c) be a Pythagorean triple. Then
(ka)? + (kb)? = K*a® 4+ K*b* = K*(a® + b?) = k*c? = (kc)>.
So if k is a positive integer, then (ka, kb, kc) is a Pythagorean triple.

Well that’s all very good and interesting, but really all those Pythagorean
triples are in some sense the same. At the very least, they can all be generated
from the one original Pythagorean triple. What about when a2 and b have no
common factors? That is, they are what’s known as coprime?

In fact, the answer here is still yes, but now we have to introduce a formula
of Plato’s: Euclid’s formula.

Euclid’s Formula Theorem
Every Pythagorean triple can be constructed using positive integers n, m (and
k) using the following formula:

a = k(m* —n?), b = k(2mn), ¢ = k(m? + n?)

In particular if k = 1, n, and m are coprime and m — n is odd, then the triple
has no common factors and is called a primitive triple. If n and m are both
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odd, then 4, b, and c are even and so the triple is not primitive (but dividing
through by 2 will result in a primitive triple).

Proof

To show that this formula generates Pythagorean triples is easy; you just have
to show that a? + b?> = c?. To show that any primitive Pythagorean triple can
be written in that form for some n and m is also pretty easy, and involves
writing the terms as a fraction in simplest form. I have omitted both proofs
here, but they're easy enough that you should try them yourself. If you get
stuck, just check out the helpful Wikipedia page.

But with k = 1, there are infinitely many n and m coprime with m — n be-
ing odd (can you prove this?) so there are infinitely many primitive triples.
Hence, does that mean that every number is in a primitive Pythagorean
triple?

No, as 6 is not part of a primitive triple. We can prove this by showing that
6 cannot be element a or ¢ (by bounding both of them) and then showing
that when 6 = b, the triple is not primitive. In fact, any number that can
be written in the form 4d + 2 for an integer d (that is, numbers congruent
to 2mod 4) cannot be part of a primitive triple. Strikingly, the contrapositive
is also true: every number that is not congruent to 2mod 4 is in a primitive
triple.

This means that there are an infinite number of primitive triples, but it is a
smaller infinity than the infinite number of integers. You might have to wait
until beyond second year to fully appreciate this.

However, if weletm =2d+1and n = 1, then b = 2mn = 4d + 2. So all those
numbers we just excluded from the primitive triple club can in fact find their
way into a non-primitive triple. This means that the set of all numbers that
are in a Pythagorean triple is actually a big happy family. Every integer is in
one! Except for 1 or 2...

— Giles David Adams

Some say that the Pope is the greatest cardinal. But others
insist that this simply cannot be, as every Pope must have a
successor.
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Statistics on Graphs

Our civilization has become intimately familiar with statistics. We routinely
accept likelihood estimates in everyday life, we don’t blink an eye when our
marks are scaled to a regular distribution, and we expect ordinary office soft-
ware to perform least squares regression. We are used to seeing statistical
analysis done on almost any numerical figure we can imagine, seemingly
unaware of the implicit constraints required to fit the framework of classical
statistics. What constraints, you ask? Perhaps this is a question best answered
by example.

Example 1: Darwin’s Finches. A quarter-century before On the Origin of
Species, Charles Darwin was in the Galapagos Islands, and noticed that finches
with similar beak shapes tended to occur on different islands. Since beak
shape is directly related to diet, this suggests some species drove out others
through competition for food. We all know where this train of thought even-
tually led, but what about the initial observation? How do we reconcile the
statement “birds with similar beaks tend to occur on different islands” with
our modern notion of statistical significance?

1. Geospiza magnirostris, 2, Geospiza fortis,
3. Geospiza parvula. 4, Certhidea olivasea.

Example 2: Six Degrees of Separation. In our increasingly connected world,
the idea that two typical people are separated by about six friend-of-a-friend
connections seems almost mundane. Recent studies have found the aver-
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age distance on Twitter to be around 4, while Facebook lies slightly below
6. Whatever the figure might be, we still have a statistical conundrum: how
do we decide whether or not this is surprising? More precisely, is this a
mathematical phenomenon that naturally arises whenever we form links be-
tween things, or is it a sociological one that reflects the way humans form
friendships?

Finding statistics in these examples is not difficult. They both ultimately
boil down to a single figure—for Darwin’s finches, we are interested in the
number of occurrences of similar-beaked birds on the same island, and for
six degrees of separation, we care about the average separation distance. We
can still naively ask our usual question: “What is the likelihood of observing
this statistic?”

The problem arises when we try to define what we mean by “likelihood”.
Neither statistic in question readily fits the classical interpretation of a num-
ber sampled from a repeatable experiment. In both cases, there is only a
single data point—there is exactly one distribution of finches in the Galédpa-
gos Islands, and there is exactly one friendship network of the world. With-
out a probabilistic backdrop against which to compare, the idea of likelihood
makes no sense.
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Yet within our single data point lies a multitude of information. The friend-
ship network of the world is a graph—each pair of vertices (people) contains
one bit of information, namely whether or not those two people are friends.
These bits are far from independent (friends of friends are more likely to
be friends), but we should still be able to extract plenty of useful informa-
tion. Similarly, Darwin’s observation is a bipartite graph—vertices are either
finches or islands, and our bits of information are again the absence or pres-
ence of edges, that is, whether or not a particular finch lives on a particular
island.

Now we can pull out some probabilistic machinery. If we inject random-
ness into our edges, we obtain a random source of graphs, which provides
the missing backdrop against which to compare our real-world observations.
Armed with a probability distribution of graphs, the question “What is the
likelihood of observing this statistic?” suddenly makes sense.

But what distribution should we pick? We already concluded that the edges
aren’t independent, so picking edges randomly won’t work. Looking at the
vertices instead, we see that they are fixed—there are a fixed set of people in
the world, and a fixed set of finches on a fixed set of islands. Going further,
it makes sense to consider the number of connections at each vertex to be
fixed, that is, to fix the friendmaking potential of each person, the prolific-
ness of each finch, and the food abundance of each island. Fixing the degree
sequence—the set of vertices along with the number of connections at each
vertex—we obtain a natural probability distribution on graphs, where each
graph with the given degree sequence occurs with equal probability.

Problem solved, right? Actually, not quite. Here statistics ends and math-
ematics begins. Statistics defines the problem—assume the underlying dis-
tribution is uniform among those with the observed degree sequence, and
calculate the likelihood of the statistic in question. Mathematics is what we
need to actually deal with this complicated yet somehow elegant underlying
distribution.

Probability is perhaps unique as a field of mathematics where a few non-
technical pages can bring us to the forefront of active research. We conclude
by presenting a beautiful solution by Joseph Steger and Melbourne’s very
own Nick Wormald from the turn of the century, which was proved by Bayati,
Kim and Saberi in 2010 (some minor tweaks omitted for simplicity):
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1. Arrange all the people in the world around a circle (you’ll need a very
large circle, or a very abstract imagination).

2. Ask each person how many friends they would like to have. Give each
person one end of that number of strings, and gather the loose ends of
everyone’s strings at the centre of the circle.

3. Pick two loose ends at random, and tie them together, as long as it
doesn’t connect a person to themselves or repeat a previous connection.

4. Repeat the previous step until there are no loose ends left.

As long as no one requests a huge number of friends, you won't get stuck
with loose ends that can’t be tied, and the distribution of the friendship graph
you create is asymptotically close to the one we want for our statistical anal-
ysis.

Can you figure out the corresponding solution for Darwin’s finches?

— James Zhao

Q: How many mathematicians does it take to screw in a light
bulb?

A1: None. It’s left to the reader as an exercise.

A2: None. A mathematician can’t screw in a light bulb, but he
can easily prove that the work can be done.

A3: The answer is intuitively obvious.

A4: Just one, once you’ve managed to present the problem in
terms he or she is familiar with.

A5: In earlier work, Weiner (2004) has shown that one mathe-
matician can change a light bulb.

A6. If k mathematicians can change a light bulb, and if one
more simply watches them do it, then k + 1 mathematicians
will have changed the light bulb. Therefore, by induction, for all
n in the positive integers, n mathematicians can change a light
bulb.

Paradox would like to thank Giles David Adams, Mel Chen,
Sam Chow, and James Zhao for their contributions to this is-
sue.




