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Words from the Editor

Welcome all to the first edition of Paradox for 2006! We are the magazine
of the Melbourne University Mathematics and Statistics Society (known as
MUMS for historical reasons). This edition is full, as always, of interesting
articles about all things mathematical, and even some things computer scien-
tific. You can find out how some people spent those priceless summer months
working on the clustering problem, and how the Google metric allows us to
quantify exactly how stupid George W. Bush is. If you’re interested in attack-
ing the code used by nations and banks around the world to keep their com-
munication secure, then you need look no further than our article on cryptog-
raphy, and if you are interested in irrational numbers and the lives they have
claimed, then we’ve got you covered. Chaos, you will learn, is not only a state
of mind but a well-defined mathematical concept, and there are a few amus-
ing anecdotes from the excellent book Mathematical Apocrypha, by Steven G.
Krantz, thrown in for good measure.

Paradox articles are written mainly by students (this edition includes articles
by three first-time contributors). So if you would like to have a go at writing
an article (it doesn’t have to be technical or anything) then go for it! You can
ask questions and send articles via email: paradox@ms.unimelb.edu.au .

— Nick Sheridan

The Front Cover

The bizarre object on our front cover is a Roman dodecahe-
dron. That is quite strange – the Greeks were the ones who
were obsessed with numbers and Platonic solids and so on,
the Romans weren’t really renowned for their interest in such
frivolities. Yet these hollow bronze dodecahedra (about 10cm
across), dating from around 200AD, have been found all over
Europe, from Great Britain to Hungary. Their purpose is un-
determined, and conjectures range from candlesticks to sur-
veying instruments to toys. There was one case of a bronze
Roman icosahedron. It was misclassified as a ‘dodecahedron’
in a museum’s basement storage for decades before someone
noticed that it was not, in fact, a dodecahedron, but an entirely
new phenomenon.
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Words from the President
Welcome to what should be another action-packed year from the Maths and
Stats Society. MUMS is a society that represents all mathematics and statistics
students, offering competitions, seminars and our magazine Paradox. Our
events are open to all Melbourne University students as well as the general
public. In particular all students studying a mathematics or statistics subject
are automatically members of MUMS.

Weekly seminars are held most weeks, covering areas of mathematics that are
often not found in high school or university. I strongly encourage you to at-
tend these as they offer students a chance to discover interesting aspects of
mathematics in an informal and friendly environment. Certainly the high-
light of the year should prove to be the Puzzle Hunt, which keeps competitors
intrigued and challenged for over a week. The competition has grown in pop-
ularity over the past few years, with over 600 people competing last year from
across the world. I would like to stress that, despite the common perception,
the Puzzle Hunt is not mathematically oriented and contains puzzles that re-
quire general logic and problem solving skills.

Another popular competition is the University Maths Olympics, which is held
in second semester. As the name suggests, this competition combines problem
solving and physical prowess, where teams compete in an exciting and fast-
moving atmosphere. We also run a trivia night each semester.

Our website (www.ms.unimelb.edu.au/˜mums ) is designed to provide in-
formative and relevant content for students, as well as up-to-date information
on our latest events and seminars. In particular, there is a guide to free soft-
ware which students may find useful in their studies and personal pursuits.
You can keep in touch with all that’s happening in MUMS by joining our mail-
ing list, which can also be found on the website.

We’re always looking for people who’d like to contribute to MUMS, so if you
would like to become more involved, please consider coming along to our
AGM to run for a position. Our AGM will most likely be held in late April or
early May.

We would love to hear any comments or suggestions you may have, whether
it be via email or in person. In fact, if you’re walking through the building,
feel free to pop in for a chat and see what’s going on in the MUMS room.

The MUMS committee looks forward to meeting many of you this year.

— Andrew Kwok
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Why don’t you go for a swim instead of reading
maths articles?

Imagine yourself sailing in the halcyon Aegean Sea, while cogitating over the
diagram depicting a square. Something dawns on you and, excited, you no-
tify your colleagues. Suddenly, cultivated examination of your scroll turns
into a brawl, and you are sentenced unanimously to death by being thrown
overboard.

The subject of the dispute, however, is not over important matters like wealth,
politics or who ate the papyrus used for making scrolls. There was a time
when studying maths could be dangerous, especially for Hippasus, who more
or less suffered the above fate. For the Pythagoreans, his discovery split asun-
der the rational world: he had shown that the diagonal of a square compared
to its side length is not a ratio of integers.

To see a proof of this now trivial fact, see the previous editions of Paradox. For
those who knew the story from kindergarten, have a look at this alternative:

If
√

2 is rational, pick the smallest natural number n such that n
√

2 is an inte-
ger. It follows that n(

√
2− 1) is an integer and so is n(

√
2− 1)

√
2 (expand the

bracket). But n(
√

2− 1) < n as 2 >
√

2 > 1, which contradicts the minimality
of n. Hence no such n exists and

√
2 is irrational.

This proof uses no divisibility arguments and can be constructed from the
definition of rationality alone; it can be easily extended to prove that any non-
square integer has an irrational square root; and by induction, any non-nth
power has an irrational nth root.

Here is another proof that does not involve number theory: if
√

2 = m/n in
lowest terms then it also equals to (2n−m)/(m−n) (check by cross multiply-
ing), so it is reduced to yet lower terms, which means it cannot be rational.

How did we come up with these fractions in the first place? Well, A4 papers
are made in the ratio of

√
2 : 1, so when you fold it in half the same ratio

applies. Now if you let
√

2 : 1 = m : n, and draw the largest square using 3
sides of the paper, you can see that the leftover rectangle has ratio (

√
2 + 1) :

1 = n : (m− n), which gives
√

2 = 2n−m
m−n , as required.

Just as you may think it cannot get any simpler than this, we’ll prove the irra-
tionality of the golden ratio:
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Definition: when a segment is divided in two such that the ratio of the whole
to the longer part equals the ratio of the longer part to the shorter part, then
that ratio is the golden ratio φ.

Now assume φ is n/m in lowest terms. Take n to be the length of the whole
and m the length of the longer part. Then we have n/m = m/(n −m). Oops,
now we found a fraction in lower terms. Contradiction.

The Pythagoreans worshipped the golden ratio. Pythagoras supposedly dis-
covered it and noted its various occurences in the pentagon (for instance,
cos(36◦) = φ/2 is used in the straightedge and compass construction of the
shape); for this reason the pentagon also became a subject of fervent study.
Fascinatingly, the fractional form of φ was apparently never sought after. In
fact, φ is the most irrational number in the sense that its continued fraction is
the slowest (of all numbers) to converge.

The existence of irrational numbers greatly vexed Pythagoras, who could not
logically prove it wrong: probably that was why the numbers got their name.
So he denied their existence. As a note, this is by no means the strangest thing
he had done. Legends have it that, once, threatened by a poisonous snake, he
bit the snake to death. He was also said to be the son of Apollo, have appeared
in two places at once, and walked on water.

Not well known was that mathematicians were not totally comfortable with
the notion of irrational numbers until the 19th century, when Dedekind and
Cantor finally settled the problem. More than 2 millenia had passed and many
theorems were proven about those numbers before they were formally de-
fined. Even the word “surd” comes from Latin “surdus”, or deaf. Interest-
ingly, imaginary numbers were first shown to exist (in solution to cubics) and
had the consistent theory worked out in less than 100 years.

One of the most famous numbers in maths, e, was shown to be irrational by
Euler; only in 1873 Charles Hermite showed e is transcendental (i.e. not the
root of a polynomial). Its irrationality is now often left as a first year exercise:

Taylor’s series yields

e =
1
0!

+
1
1!

+
1
2!

+
1
3!

+ . . .

If e = n/m, then em! is an integer. In the expansion, em! = integer plus the
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leftover,

1
m + 1

+
1

(m + 1)(m + 2)
+ . . . <

1
m + 1

+
1

(m + 1)2
+ . . . =

1
m

(infinite sum of a geometric series), which clearly cannot be an integer (m = 1
is trivially impossible). Hence em! has a fractional part, contradiction.

Logarithms are also easily shown to be irrational. For instance, if log2 3 = m/n,
then 2m = 3n, which clearly is false.

It is by no means easy to determine the irrationality of a number in general;
that for π was only solved in 1761 by Johann Heinrich Lambert, with the in-
spiring comments, “The diameter of a circle does not stand to the circumference as
an integer to an integer”. He was so thrilled by this and his other feats like the
hyperbolic functions that, when Frederick II asked him in which science he
was most proficient, Lambert modestly replied “all”. Amazingly, the mod-
ern version of the proof, though it heavily involves calculus, uses only one
fundamental property of π: sin(π) = 0.

In fact, almost all real numbers are irrational (in the sense that rationals are
countable and reals are not), and almost all the irrational numbers are tran-
scendental. For instance, cos x and tanx in radians are irrational for all non-
zero and rational x. In general, to prove a number is irrational is extremely
hard, and transcendental even harder. Gelfond’s theorem is an exception: if a
is algebraic (i.e. not transcendental) and not 0 or 1, and b is irrational and al-
gebraic, then ab is transcendental. A famous consequence is that eπ = (−1)−i

is irrational. π + eπ was proven irrational as recently as 1996.

It is not known whether π + e and π − e are irrational. Neither do we know
about 2e, π

√
2, or the Euler-Mascheroni constant for those who care.

A slight modification to Gelfond’s theorem is not true: if a and b are irrational,
then ab can be rational! For example, take a = b =

√
2. If aa is rational then we

are done. If it is irrational, then (aa)a = a2 = 2, and we are also done.

Now here is one for you to try. πe. if you happen to have a correct proof for
its rationality or otherwise, drop it into the MUMS room in utmost secrecy,
and we’ll let you collect a large black suitcase somewhere in the Stochastic
Modeling section of Richard Berry building (because no one ever goes there).
Do not mention the proof to anyone else or you’ll face death by drowning.
Good luck.

— James Wan
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Clustering

Clustering is a fundamental problem in computer science1. The idea is sim-
ple: place related items in the same cluster, and dissimilar items in different
clusters. Figure 1 gives an illustrative example. There are literally hundreds
of formulations of this problem—you can cluster most anything: basic items,
like vectors in Rn, or an arbitrarily complex object such as a lecturer.

Cluster 1

Cluster 2

Figure 1: An example of clustering elements in F: the set of fruit

Over the summer, I worked with Dr Anthony Wirth from the Department of
Computer Science. Tony is a lecturer and a researcher in the department2. Al-
though he works in Computer Science, he’s had a life-long love for mathematics—
he was the president of MUMS in 1999.

Tony and I have had a productive summer reading research papers, gathering
experimental results, and even writing our own paper for a conference! My
work was supported in part by a summer studentship from the Department of
CS. I strongly encourage second-year students to attempt to get summer work
at the university—I’ve had so much fun that I’m actually continuing work into
the semester.

1So what’s it doing in Paradox? It’s a fundamental and interesting problem, that’s what.
2He lectured 433-152 and 433-254 in 2005, and is doing so again this year.
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Clustering is, in general, a difficult problem, on several levels. Most formu-
lations of the problem (including the k-centre clustering defined below) are
NP-hard—what this means is that unless something very improbable is true,
a clustering that optimises a given criterion function cannot be found in poly-
nomial time. Other results have further reinforced the difficulty of clustering;
most notably, a 2002 paper presented an impossibility theorem for clustering
[J. Kleinberg, Advances in Neural Information Processing Systems (NIPS) 15,
2002]. Three more-or-less reasonable properties that one might like a cluster-
ing system to have were given, and it was shown that no formulation can sat-
isfy all three at the one time. The Rolling Stones got it right: you can’t always
get what you want.

And yet, not all is lost. Although we generally cannot cluster optimally in
polynomial time, we can create procedures which in practice get very close to
the optimal solution. These algorithms are called approximation algorithms,
or heuristics3. I’ll define a simple approximation algorithm shortly.

A simple formulation of clustering could run as follows: given n points in Rn,
pick k centres such that you minimise the maximum distance from a centre to
any of the given points. The cost of a given solution is precisely this distance.
If concrete examples are your bag (baby), then consider placing pizza outlets
to satisfy the claim, “Delivered in 30 minutes, or your pizza free.” Ideally,
you would build outlets (centres) such that you keep the time taken to get
to the most distant customer (point) as small a possible. Pizzas are delivered
from the nearest outlet, and in a similar way, points will be assigned to their
nearest centre to form clusters—one per centre. This form of clustering is called
k-centre.

In Algorithm 1, the furthest-first algorithm (FFA) is presented. The intuition
behind this algorithm is to spread out the centres as much as possible. To
this end, we start with an arbitrary choice of initial centre, and then repeat-
edly pick the point most distant from the current set of centres. We define the
distance between an item and a set as the distance between the item and the
nearest member of the set. We can make some performance guarantees for this
algorithm, as shown in Theorem 1.

Theorem 1. Suppose CFFA is the cost of the FFA-produced solution. Then

CFFA ≤ 2 · COPT

3There is in fact a subtle distinction between the two: approximation algorithms are heuristics
with theoretical performance guarantees



Page 10 Issue 1, 2006 Paradox

Algorithm 1 FFA: Furthest-first approximation algorithm for k-centre cluster-
ing.
Require: Set of points V in Rn, integer parameter k

Pick a point p from V and initialise C = {p}
while |C| < k do

Find y, the point in V furthest from its nearest centre in C
Set C = C ∪ {y}

end while
return the set of centres C

where COPT is the cost of the optimal solution.

Proof. First, note that if Algorithm 1 were to run for k + 1 iterations, the dis-
tance of the point y picked on the final iteration would be precisely CFFA. Also
note that the distance of the y picked at each iteration is less than or equal to
that of the y chosen at the previous step, because otherwise we would have
picked the current y earlier. As a result, the points in C, as well as the y we
would have picked at the next iteration are all separated by at least CFFA.

When we assign points to the centres in the optimal k-centre solution (which
we don’t actually know), the pigeon-hole principle guarantees that (at least)
two of these k + 1 points will be assigned to the same centre. A lower bound
on the diameter of this cluster is CFFA, and so the minimum cost of the optimal
solution is CFFA/2.

Although there’s certainly theoretical work being done in clustering, the ma-
jority of the literature is concerned with practical methods, and experimental
results hold more clout than the nicest theoretical properties4. For example,
Tony and I are working on document clustering: given a set of documents
(say, newspaper articles, or MUMS magazines), cluster them into somewhat
useful topics. Document clustering is more complex than the simple Rn prob-
lem posed above. You can represent documents as a real vector (think of a bag
of words), but you lose some information about the document in doing so; just
what is lost is very hard to define and predict, making it extremely difficult to
provide any kind of theoretical performance guarantees.

Active research areas in clustering include:

4Except with Tony—he likes mathematics too much
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• Soft clustering: almost all forms of clustering allow an object to be as-
signed to one cluster, and one cluster only. (Practical) multiple member-
ship is still an issue under consideration in the literature.

• Efficiency/quality tradeoff: most algorithms can provide a good cluster-
ing given enough time, but datasets can be of sizes of the order of bil-
lions of items with thousands of dimensions. On these datasets, many
standard algorithms become completely infeasible.

• Anything you can think of! Clustering is such a broad area, with such
diverse applications, that papers are constantly being published which
apply standard techniques to new kinds of data. Many of the theoretical
results in the field are relatively recent because of the largely empirical
nature of the initial clustering research.

If there’s one thing to go away knowing about clustering, it’s this: all cluster-
ing is in the eye of the beholder. If you were asked to cluster a set of natu-
ral numbers, you could group them into even or odd—you could also group
them into prime and composite classes, or even intuitively “big” numbers and
“small” numbers. There is never a single canonical clustering over a set of
data: it always depends on what you actually want and why you began clus-
tering in the first place.

— Michael Bertolacci

Nobert Wiener (1894–1964, inventor of cybernetics) was quite
a celebrity around MIT. Students were in awe of him. There-
fore, when one of his students spied Wiener in the post office,
the student wanted to introduce himself to the famous profes-
sor. After all, how many MIT students could say that they had
actually shaken the hand of Norbert Wiener? However, the
student wasn’t sure how to approach the famous savant. The
problem was aggravated by the fact that Wiener was pacing
back and forth, deeply lost in thought. Were the student to in-
terrupt Wiener, who knows what profound idea might be lost?
Still, the student screwed up his courage and approached the
great man. “Good morning, Professor Wiener,” he said. The
professor looked up, struck his forehead, and cried, “Wiener!
That’s the word.”
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The Google Metric1

Many a geeky maths student has asked what happens when we integrate an
apple with respect to an orange. The answer, of course, is that this is a silly
question; apples and oranges are completely different things. But what if we
change the question slightly? What if we ask the question, how far apart are
an apple and an orange? It might seem ridiculous to think about a “distance”
between unrelated objects, but after a little thought, one might more or less say
that the distance between an apple and an orange is greater than the distance
between a Granny Smith and a Red Delicious, but smaller than the distance
between Fiona Apple and Apple Martin. Vague as it may be, there seems to be
some concept of distance going on here.

Luckily, two Dutch mathematicians, Rudi Cilibrasi and Paul Vitanyi, have al-
ready investigated the matter2, and come up with a solution using the nev-
erending catalogue of knowledge known as Google. As their theory goes, two
phrases that are closer to each other, when put into a search engine, should
return relatively more web pages that contain both of those phrases. The con-
cept is really very simple, with the main technical difficulty being to account
for discrepancies caused by some phrases having more search results, or hits,
than others. For example, there are 10 million pages containing both microsoft
and dog but only 2 million containing both knife and fork, yet the latter pair are
obviously closer.

How do we fix this? We have some normalising to do, but it isn’t at all clear
how to do it. A good idea is to use logarithms of hits rather than the number
of hits themselves, since the difference between 10 and 100 hits is more like
the “10 times” difference between 1000 and 10000 than the “90 hits” difference
between 1000 and 1090. Recalling our high school logarithm laws, multiplying
by 10 is the same as adding log(10) to the logarithm, so this means we only
have to add and subtract rather than dividing and multiplying. The rest of the
process of finding the optimum normalisation procedure is mostly trial and
error; Cilibrasi and Vitanyi came up with the following formula:

d =
log x− log z

log M − log y

1Pedants beware: this isn’t really a metric, as it doesn’t satisfy the triangle inequality
2See http://arxiv.org/PS cache/cs/pdf/0412/0412098.pdf
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Here, x is the number of hits for the first phrase and y is the number of hits
for the second phrase, with order chosen such that x ≥ y; z is the number of
hits for both phrases, and M is the total number of pages indexed by Google,
which is currently around 1010. A possible interpretation is that this distance
is the number of hits for one phrase that don’t contain the other, scaled to fit
with the rarity of the individual phrases among Google’s database.

At this point, some philosophical questions come into it. Can we take it one
step further and define a word entirely by the collection of contexts in which
it is used? Apparently, we can, but our Dutch friends claim we’ll need a much
bigger pool of information than even Google to start with.

For now, it’s much more fun to just play with the formula, as shown below.
Remember, kids: put the phrases in quotation marks, so that Google under-
stands to search for them verbatim rather than their constituent words. As a
guide, anything lower than around 0.6 is “close” and anything higher is “dis-
tant”.

Phrase 1 Phrase 2 Distance
apple3 orange 0.60
granny smith red delicious 0.23
fiona apple apple martin 0.67
microsoft dog 1.02
knife fork 0.46
george w bush stupid 0.54
george w bush intelligent 0.86
theodore j knott knot man 0.29
maths olympics 0.69
john howard kim beazley 0.28
algebra spaghetti 0.90
rubik cube 0.11
tweedledum tweedledee 0.03
fashion sense lecturer 1.25
maths career 0.83
google metric 0.83

— James Zhao
3This search excluded references to Apple Computer Inc.
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Chaos Theory

Chaos; we’ve all heard it somewhere. In fact, it has become one of those buzz
words, such as ‘quasi’ or ‘quantum’, that just gets thrown about to make some-
one sound pseudo-intelligent 1. When you get to the bottom of it though, what
is mathematical chaos all about?

Contrary to the common notion of chaos as being something utterly random,
mathematical chaos is actually deterministic. This means that, in mathematics,
chaos is not actually random and could be predicted given enough informa-
tion. However, superficially it does seem to be quite ‘chaotic’. The easiest way
to get a feeling of what it’s all about is probably to take a look at a very simple
chaotic system.

The logistic map is specified as follows: xn+1 = rxn(1 − xn); for the sake of
simplicity, we shall only deal with 0 < xn < 1 and r > 1 in this article. As
you can see, this mapping takes a number and shoves it through a series of
iterations to produce a sequence. For example, if we start with r = 1 and
x1 = 0.5, you would produce the following sequence: {0.5, 0.25, 0.188, 0.152,
0.129, 0.112, 0.100, 0.090, 0.081. . . }. It should be intuitive that this sequence
might converge to 0. Indeed, if you try this with all the numbers between 0
and 1, you’ll find that the sequence has a limit of 0. This should be no surprise,
because, when r = 1, xn+1 = xn(1 − xn) = xn − x2

n, so you’re subtracting a
bit of the number every time you get a new term. Here, 0 is known as a fixed
point. Now, fixed points are just points that stay constant after any number
of iterations. Furthermore, if all of the adjacent points to our fixed point a
converges to a, then a is known as a stable fixed point. On the other hand, we
also have unstable ones, where all adjacent points will diverge (it’s interesting
that for any real numbers outside of our specified range for xn, successive
iterations will cause our sequence to ‘blow down’ to negative infinity).

So far, it has been fairly obvious and predictable what our sequences will con-
verge to. In the tried and true traditions of the dead cat 2, let’s see what hap-
pens when we change the r-value. I find that a diagram helps, so here’s one
someone else prepared earlier.

1Pseudo-intelligent is also one of those buzz-words.
2The one killed by curiosity, that is. Obviously it had a few lives left, otherwise, how could we

follow its tradition?
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This is a bifurcation diagram. In this particular case, r has been plotted against
x, and the clear single lines in the picture are ‘attractors’, whilst the shaded
portion is where chaotic behaviour is exhibited. Definition time. Attractors
are just sets that our ‘system’ will evolve to over time. In our example of r = 1,
the attractor is simply {0}, just as you can see that for r = 2, it’s {1/2} (i.e. if
r = 2, then after many iterations, our sequence xn will converge to 1/2). For
now, let’s just examine the single unbranched line from r = 1 to r = 3, a little
calculation will show that these stable fixed points (a type of attractor) are just
(r−1)/r. If we let x be the value that our sequence xn converges to, then: since
limn→∞ xn = xn+1, x = rx(1 − x), 0 = rx − rx2 − x, 0 = x(x − (r − 1)/r) ⇒
x = 0 or x = (r − 1)/r.

Now something quite strange happens at r = 3, according to the above cal-
culations. Although what we’ve worked out shows that there will always be
a fixed point at (r − 1)/r, why on earth do we have two lines branching off?
Moreover, what are the formulae for these new attractors?

To be able to half-answer these questions (I’m not going to fully answer them),
let’s figure out what the two lines mean. Take r = 3.2 and x1 = 0.9 and we
get the following sequence; {0.9, 0.288, 0.656, 0.722, 0.642, 0.735, 0.623. . . 0.799,
0.513, 0.799, 0.513. . . }. In effect, what we’ve ended up with in this case is called
a period-two orbit; an attractor that is a sequence of two repeated numbers
(here {0.799, 0.513}).

To work out what the period-two orbit will be, all we need to do is to think
about what happens to xn and xn+2 as n tends to infinity. That is, limn→∞ xn =
limn→∞ xn+2. For the ease of typing this up, let’s just call this limit x. Then,
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xn+2 = r(xn+1)(1− xn+1) = r[rxn(1− xn)][1− rxn(1− xn)]

Or, as n →∞,

x = r2x(1− x)(1− rx + rx2)

0 = r2x(1− x)(1− rx + rx2)− x

Since all x has to satisfy is xn = xn+2, so the fixed points that we worked out
earlier are both solutions for x. This means that we can divide everything by
x and x− (r − 1)/r to obtain a simpler equation.

0 = r2x2 − (r2 + r)x + (r + 1)

⇒ 0 = rx2 − (r + 1)x +
r + 1

r

Using this equation, it is now easy to derive the period-two orbit as well as the
determinant of this equation. The attractor lines can be found by the formula,
[(r + 1) ±

√
(r − 3)(r + 1)]/2r. On the other hand, the discriminant ∆ = (r −

3)(r + 1), which is greater than 0 when r > 3. This partially explains the
phenomenon that we witnessed in the bifurcation diagram since it shows that
the period-two orbit is only possible from r = 3 onwards. However, it does not
explain why these period-two orbit attractors are preferred over the original
single-lined, stable point. To do so, we do the following. Let f(x) = rx(1 −
x) ⇒ f ′(x) = r − 2rx. Now, let’s think about this: in order for a point k to
be stable, it would need to have quite a small gradient. Indeed it might make
quite a bit of sense for the stable attractor to have |f ′(k)| < 1, because having
your derivative greater than 1 means the magnitude of the next term in the
sequence will be further away from the current attractor. Whereas |f ′(k)| = 1
preserves the distance between xn and k and it follows that, if the magnitude
of the derivative is less than 1, then the sequence is brought closer to k with
each iteration. Indeed, with the help of Taylor’s polynomials, this hypothesis
can be easily confirmed. Since f ′((r − 1)/r) = r − 2(r − 1) = 2− r ⇒ |f ′((r −
1)/r)| < 1 for 1 < r < 3. Therefore, (r − 1)/r is a stable fixed point for
1 < r < 3.

Going back to the bifurcation diagram, you may see why the rest of the peri-
odic orbits behave that way. The original period-two orbit branches more and
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more to create a pattern that will look fairly similar no matter how many times
you magnify it. This type of pattern is often known as a fractal. At r ≈ 3.57,
something quite interesting happens, the fractals stop, and instead, we have
the onset of chaos. In this strange region, the smallest difference in our ini-
tial x value will result in massive differences after only a few iterations; take
a look at the following example. Let r = 4, x = 0.871, then we have: {0.871,
0.449, 0.990, 0.040, 0.155, 0.525, 0.997, 0.010, 0.040, 0.151. . .} and for x = 0.872:
{0.872, 0.446, 0.989, 0.045, 0.173, 0.572, 0.979, 0.082, 0.303, 0.844. . . }. Although
the initial difference was only 0.001, after only 10 iterations we have already
had deviations as great as by 0.693! There are two other qualities that a chaotic
system must have: it needs to be topologically mixing and dense with periodic
orbits. Without being rigorously correct, you might like to know that topologi-
cally mixing is having the points ‘mixed around’ or ‘spread out’ after iteration.
This is important, because you don’t want the points to clump together and
form a stable fixed point or periodic orbits. Denseness, on the other hand, can
be thought of as follows: take any point in the region that our chaotic mapping
occupies, and draw a small circle around this point. If, no matter how small
you draw the circle, there will always be a point from our system found in it,
then whatever we had was dense.

Lastly, just take a look at the white vertical strokes in the bifurcation diagram.
They are actually just places where there are newly formed cycles, such as at
r = 1 + 2

√
2, where we have a period-3 orbit that branches into a period-6

orbit, to a period-12 orbit and so forth. It’s fascinating why this type of thing
should happen at all: one minute, we’re dealing with a patch of fuzzy grey
denoting chaos and the next we’re looking at a window of orderly periodic
cycles. As pathetically clichéd as it might sound, there is order in amidst all
that chaos.

This article only convers a tiny portion of the mesmerising world of chaos the-
ory, and there are many questions and topics that are interesting to consider.

• Why are there fractals when we’re dealing with chaotic systems?

• One of the Feigenbaum constants is δ = 4.669201609102990671 . . . and
this number ascribes the limit of the ratio between successive bifurcation
intervals, and hence can be used to predict when the system becomes
chaotic. It doesn’t just apply to the logistic map, but actually holds true
for all one-dimensional mappings with a single hump. Why is this the
case? In addition, the number is suspected to be transcendental, which
in itself can be interesting.

— Yi Huang
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Adventures in Cryptography – The RSA scheme

It is the year 2020. An evil secret society, calling itself Team X, and run by
politicians and mercenary physicists, is plotting its next dastardly act, to se-
cure world domination. At the helm of the heinous organisation is someone
unspeakably ruthless and nefarious, known only as Dr X0. The rest of his
hench-men are similarly code-named X1, X2, . . .

Already the sinister organisation has infiltrated every country of the earth. In
every corner of the globe preparations are being made for a sequence of events
that will consummate the cruel dominion of Team X irrevocably.

In the midst of this woe, there is a flicker of hope. Karen, a 20-something
mathematician is desperate to stop the clandestine activities of Team X before
it is too late, but has very little inside information.

She does however know one critical fact. Team X has decided to implement
the RSA cryptographic protocol to secure its evil communications. Created in
1978, RSA is famed for its unbreakability, thus Team X has chosen it.

Karen needs to do some research:

The RSA Protocol in a Nutshell

RSA (named after its creators Ron Rivest, Adi Shamir and Leonard Adleman)
is a protocol for encrypting data, based on the supposed computational diffi-
culty of factoring numbers with large prime factors. Here’s how it works:1

Alice wants to be able to receive encrypted messages from anyone, such that
only she can decrypt them. So:

1. She finds two large primes p and q.2

2. She finds integers e and d such that ed ≡ 1 mod φ(pq) (once she picks e,
she can calculate d by the Euclidean Algorithm).

3. She publishes 〈e, pq〉 as her public key maintaining 〈d〉 secretly as her pri-
vate key.

1If you are unfamiliar with RSA, a detailed explanation can be found in Paradox Issue 1, 2004:
http://ms.unimelb.edu.au/ paradox/archive/issues/p04-1.pdf

2There are many algorithms to find large random primes e.g. Miller-Rabin test.
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Bob wants to send Alice a secret message M . Here is what he does:

1. He looks up Alice’s public key.

2. His message M is basically just an integer3. He calculates C ≡ Me mod
(pq) and sends the ciphertext C off to Alice.

3. Alice receives C. Using her private key she computes Cd ≡ (Me)d ≡
Mkφ(pq)+1 ≡ M ·(Mφ(pq))

k ≡ M ·1k ≡ M mod (pq), by Euler’s Theorem4.

4. Alice thus obtains the original message M .

NB: e is known as the public exponent, d the private exponent and pq the public
modulus.

The Enigma:
Karen knows that deciphering communications will be nearly impossible. RSA’s
reputation as cryptographically impenetrable is formidable. The situation is
not entirely hopeless though.

Unbeknownst to Team X, she has access to the email server that connects Dr
X0 to his minions Xi. Naturally all the emails contained on this server are
encrypted with RSA, but encrypted data is better than no data at all.

She first considers a couple of simple approaches.

Bruting the Message Space:

• If Dr X0 were to encrypt simple messages like ‘Show No Mercy’ (or split
messages into small blocks, each of which is encrypted), it is theoretically
possible that Karen could simply encrypt an enormous number of differ-
ent plaintext messages M until she found a match with the intercepted
ciphertext C. In reality this tends to be much worse than searching for a
needle in a haystack.

3A message can easily be converted to one or more integers, e.g by using ASCII and interpret-
ing the block(s) in base 256.

4We require M to be coprime to pq, however the probability it isn’t, is so ridiculously small, it
is scarcely worth checking beforehand.
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Searching d:

• Karen could encrypt some message M with the public exponent e to
yield C. She could systematically compute (C)d mod pq, incrementing d
each time, until M was returned. Then she would know d, and be able
to decrypt any intercepted messages.

Again this attack is impractical, since d is invariably way too large to
systematically search for.

Since both approaches are almost certainly futile, Karen turns her attention to
other alternatives.

Factorising pq:

• She reads in a book “Attacking the public modulus is often considered
the best means of cracking RSA, and therefore many algorithms have
been devised to facilitate this...”

If Karen were able to factorise the public modulus pq, it would be a sim-
ple task to calculate φ(pq), and hence knowing e, calculate d, thereby
decrypting any cipher text.

Karen reads of several algorithms for attempting a factorisation of pq,
but notes that if pq is very large, even with the most powerful computers,
this can be an exceptionally time-consuming task.

Karen is still researching, when she receives an urgent email from a friend...

SOMETHING BIG IS HAPPENING. BY NOON NEXT MONDAY, X0 WILL
HAVE EMAILED A SECRET MEMO TO ALL HIS HENCHMEN. I HAVE A
LIST OF ALL THEIR PUBLIC KEYS. WE MUST DO SOMETHING...

==TEAM X PUBLIC KEYS==

X0 : e1 = 257, P0 = 2937598.........
X1 : e2 = 257, P1 = 9406335.........
X2 : e3 = 257, P2 = 7363941.........

.

.

.
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Later that day Karen is showering and pondering the email, when suddenly,
out of the blue, she has a brilliant flash of inspiration. Entirely forgetting that
she is stark naked, she streaks down the street in ecstasy shouting “Eureka!”

The Attack:
Karen’s euphoria lies in just two things:

• The same secret memo M is being sent to all Xi.

• All Xi have the same public exponent, e = 257.

At noon on Monday, having access to all emails sent from Dr X0 to Xi, she
obtains 257 different encryptions of M .

Me1 = M257 ≡ C1 mod P1

Me2 = M257 ≡ C2 mod P2

Me3 = M257 ≡ C3 mod P3

.

.

.
Me257 = M257 ≡ C257 mod P257

She now applies The Chinese Remainder Theorem to solve, yielding:

M257 ≡ K mod P1P2P3P4 . . . P257 where K ∈ Z+

Since the encryption process requires that M < Pi ∀ i Karen can be certain that
M257 < P1P2P3P4 . . . P257, and therefore that M257 = K.

To recover M , she simply calculates 257
√

K.

Having decrypted the message, Karen wastes no time. She anonymously posts
the decrypted memo all over the internet. With Dr X0’s secret memo made
public, his plans are thrown hopelessly into disarray. Karen’s ingenuity saves
the day.
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Afterword:
What Karen independently realised, is known more generally as a broadcast
attack. Many RSA implementations use low exponents (even e = 3) for their
speed. Team X used e = 257 since 257 = 1000000012, thus encryption with
respect to pq requires only 8 modular squarings and 1 modular multiplication.
In such implementations, it is paramount that the same messages intended for
multiple recipients are individually padded randomly, to prevent this type of
attack.

— Kim Ramchen

The Preface to States of Matter, a recent text on statistical me-
chanics by David L. Goodstein, reads as follows:
Ludwig Boltzmann, who spent much of his life studying statisti-
cal mechanics, died in 1906, by his own hand. Paul Ehrenfest
[Boltzmann’s student], carrying on the work, died similarly in
1933. Now it is our turn to study statistical mechanics.

It is said that, late in his life, Hilbert was reading a paper and
got stuck at one point. He went to his colleague in the office
next door and queried, “What is a Hilbert space?”

Paradox would like to thank James Wan, Kim Ramchen, Yi
Huang, Michael Bertolacci and James Zhao for contributing
articles to this edition.

Great is Caesar: He has conquered Seven Kingdoms.
The Third was the Kingdom of Infinite Number:
Last night it was Rule-of-Thumb, to-night it is To-a-T;
Instead of Quite-a-lot, there is Exactly-so-many;
Instead of Only-a-few, there is Just-these.
Instead of saying, ‘You must wait until I have counted,’
We say, ‘Here you are. You will find this answer correct;’
Instead of a nodding acquaintance with a few integers,
The Transcendentals are our personal friends.
Great is Caesar: God must be with Him.

— W.H. Auden, For the Time Being
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Solutions to Problems From Last Edition

Problem 1 Take a cross section of the sphere, so we get a circle with a middle
section removed. Let the centre of the circle be the origin. Let the radius be
r and height of section above the x-axis be h, then the volume left, using the
formula for rotational solids, is

π

∫ 5
2

− 5
2

y2 − h2dx = π

∫ 5
2

− 5
2

r2 − x2 − h2dx = π

∫ 5
2

− 5
2

(
5
2
)2 − x2dx =

125π

6
cm3

Problem 2 Take out a tablet of type B, so now he has 2 of each type. Cut them
in half (or dissolve them and take half of the solution) and take each half on
different days.

Problem 3 No one was able to solve this one, so now we offer $10 for the best
solution. The problem is:

A polynomial of degree n > 1 with real coefficients has n distinct real roots.
Show that the sum of the gradients of the normals to the graph of the polyno-
mial at these roots is 0.

Paradox Problems

The following are some problems for which prize money is offered. The per-
son who submits the best (clearest and most elegant) solution to each problem
will be awarded the amount indicated beside the problem number. Solutions
may be emailed to paradox@ms.unimelb.edu.au or you can drop a hard
copy into the MUMS pigeonhole near the Maths and Stats Office in the Richard
Berry Building. Congratulations to Yiling Cao, Vitaly Beliavski, Tsubasa Na-
gashima and Han Wah Chew who solved Question 2 from the last edition of
Paradox. As Han Wah Chew submitted the answer earlier than the rest, you
can come by the MUMS room to pick up the prize whenever you like.

1. ($2) What is the probability of obtaining no combinations (i.e. no any
form of double, flush or straight) in a poker hand (5 cards)?

2. ($2) Can x2 + y and y2 + x both be perfect squares, if x, y are positive
integers?

3. ($5) Prove that a divides b if and only if Fa divides Fb, where Fn is the
nth Fibonacci number.



The 2006 Melbourne Uni
Puzzle Hunt

Monday March 27th – Friday March 31st

Do you LOATHE

• Problem Solving

• Lateral Thinking

• Having fun

• Being creative

• (potentially) Unlimited bragging rights?

Then you probably won’t want to participate in the 2006 Mel-
bourne University Puzzle Hunt.

For more information:

• Google “puzzle hunt”

• Go to http://www.ms.unimelb.edu.au/˜mums/puzzlehunt/ or
http://puzzlehunt.tk

• Email MUMS at mums@ms.unimelb.edu.au or subscribe to our mail-
ing list at:
http://www.ms.unimelb.edu.au/˜mums/mlist


