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Words from the Editor

Welcome to this edition of Paradox, the magazine of the Melbourne Univer-
sity Mathematics and Statistics Society (MUMS). MUMS has a long history; its
aims in 1985 are as valid today as they were back then: to encourage social in-
teraction among maths students, to become a forum of discussion, to provide
liaison between students and staff, and to develop an interest in maths outside
coursework.

I'd like to stress here that this society is for maths students, not for maths prob-
lems. Although we do devote some time to maths problems, as you will see in
this edition, for maths is — almost by definition — the smart way of doing things
correctly. We have an article on the interesting problem of efficiently weighing
coins to find a fake one; another on the rich topic of drawing things with ruler
and/or compass, showing why you can’t trisect an angle, and finally some
tips on how to do better on your first year maths subjects (and beyond). As

usual, we have loads of jokes and anecdotes that will certainly induce lots of
head-shaking.

We also have a room, also known as G24, and people are welcome to relax in
there. We don’t do maths in the room (unless assignments are due).

There seems to be a consensus that maths is dominated by scary males with
little common sense; in fact, this is not entirely true. Well, almost. So if you
think you can run things better, please submit an article to Paradox (you can
email) on mathematical things that you find interesting, or how to run things
better. Also, come to our AGM later in the year (if you have classes in the
Richard Berry building, watch out for our posters).

— James Wan

About the front cover

The vertices of a regular icosahedron form 3 mutually perpen-
dicular golden rectangles; if the icosahedron has edge length
2, then the Cartesian coordinates of its vertices are all permu-
tations of the triple (0, +1,+¢), where ¢ = @ is the golden
ratio.
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Words from the President

Welcome. This semester, MUMS has our usual swag of activities lined up to
enhance your experience, mathematical or otherwise.

For the uninitiated, MUMS is a society dedicated to exposing students to a va-
riety of fun and interesting maths that is not covered in coursework. You can
look forward to regular seminars, trivia nights, and our main event, the Puzzle
Hunt, from 7 — 11 April. Later in the year, we will also be running the Uni-
versity Maths Olympics (UMO), an interesting sport mixing power walking
with mathematics. Publicity for these events will be posted around the maths
building, and on our website, http:/ /www.ms.unimelb.edu.au/~mums/ . To
receive email notifications, please subscribe to our mailing list, which is open
to anyone. Involvement in MUMS is by no means limited to maths students;
we encourage anyone with an interest in maths, no matter how small, to join.

For those wondering what happened to the MUMS room, we have moved!
After a number of years inhabiting G06, the MUMS room has relocated to G24
(Richard Berry building), around the corner opposite reception. Please drop
by to say hi and hang out with other MUMS regulars.

— Alisa Sedghifar

A Weighty Problem

A problem is ‘coined’
Some time ago there appeared this conundrum called the 13 coins problem”:

Amongst 13 gold coins there is one that is fake. The only way to distinguish the
fake coin from the genuine gold coins is by its weight. Placed at your disposal is a
set of two-pan scales. What is the minimum number of ‘weighings’ that need to be
performed on the scales in order to determine which of the coins is the fake?

Probably the main stumbling block to solving the problem is its deceptively
small answer — a measly three weighings. It is not hard to show that two
weighings are not enough, but constructing a solution for three weighings can
take some time.
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A more interesting take on the question is whether or not 13 coins are the best
you can do with three weighings. Or, more generally:

Given a pile of coins with one of them fake, and given k weighings on a scale, what is
the maximum number of coins amongst which you are always able to identify the fake
coin?

Even for the case of £ = 3 the answer is by no means obvious. It is unclear
whether it is 13 coins, 14 coins or even something much higher.

‘Bits’ of information

A good starting point is to establish an upper bound. Could you determine the
fake amongst, for example, 1000 coins? Clearly you couldn’t, because there is
a limit to the amount of information that can be attained in just three weighings.
So how much information is there? Well, each time you weigh something on
the scales it will tell you either

a) the left hand side was heavier,
b) the right hand side was heavier,
or ¢) the two sides of the scale are equal in weight.

Thus for every weighing you have three ‘bits” of information. So, for three
weighings, you have 3% = 27 ‘bits’ of information. But as you are asked to de-
termine which of the n coins is a fake, there are n different outcomes amongst
which you must distinguish. Thus as least n bits of information are necessary,
and so n is at most 27. We have an upper bound, but not a very good one.

A paradox?

It is here, pondering this problem, that you may realise that maths is throwing
up one of its trademark curve-balls. The problem is hard because it has been
obfuscated, paradoxically, by making it simpler. This alludes to the fairly com-
mon problem solving technique — making the question ‘harder’ (read: making
the initial conditions more restrictive), but in doing so simultaneously making
it easier to solve.

To make the question ‘harder’, we add that you must determine also whether
the fake coin is heavier or lighter. This will reduce the number of coins able to
be distinguished in k weighings, but only by very little. This is because once
you have determined which coin is fake, you automatically know whether it is
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heavier or lighter simply by considering one of the ‘weighings’ that involved
that coin. As only one fake coin is present, the side with this coin on it will be
heavier if and only if the coin itself is heavier, and similarly if it is lighter.

The only problem would occur if you did not weigh that coin at all, and this
only happens if you weighed every other coin and determined them all to be
equal in weight, concluding that the last coin must be the fake. The presence
of this last coin reduces the maximum number of coins you can distinguish by
one.

Another way to make it ‘harder’ is to add the possibility of there being no fake
coin at all. Again this makes very little difference to your ability to weigh, and
again this is because the only coin to be affected will be the (at most one) coin
that you did not weigh at all. Before, if all the other coins weighed the same
then you could deduce the last coin was fake, but not anymore. In every other
case you are determining the fake coin directly, and no such deduction based
on the fake coin’s existence is required.

It is this most restrictive version of the problem that we want to consider,
where we need to determine the exact nature of the fake coin and where we
are unsure if it exists or not. But though this problem is more restrictive, it will
actually only reduce our weighing potential by one solitary coin.

Now we can attempt to re-apply our upper-bound trick. With k weighings we
again have 3% ‘bits’ of information. But now we have 2n + 1 different states
to distinguish between, as each coin could be heavier or lighter, and also we
may have no fake coin at all. So 2n + 1 < 3k and hence n < %(3’“ — 1), amuch
tighter upper bound.

But is equality ever possible?

If we apply equality to the k¥ = 3 case, adjusting for the extra coin we get
from re-loosening the requirements, we find we should be able to find the
fake amongst 14 coins, not 13. This is highly suggestive that equality is not
attainable.

But let’s assume that equality was possible. Now we have 3* states to dis-
tinguish between and 3* bits of information. The only way to construct an
algorithm that distinguishes between the possible states in k& weighings is if
every weighing reduces the number of possible states down to exactly 371,
no matter what the outcome of the first weighing. In other words, each weigh-
ing takes the possible states, divides them up evenly into three categories, and
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then selects one of them. No category can have more than 3! states con-
tained in it, as then the remaining k£ — 1 weighings would be insufficient.

Now, suppose firstly you weigh = coins against y coins, and suppose the
scales balance. Given that there must now be exactly 3*~! possible states,
the number of coins remaining must be the number of coins that produce this
many states. So equating with the exact maximum number of coins able to be
weighed in k — 1 weighings:!

L k1 Lok
- ~1) = = 1) — ¢ —
S ) = LB -1 -a—y
1
ac-l—y = 5(3k—3k_1)
r+y = 3kt

But then z + y is an odd number (if £ is not 1), and so we initially weighed up
an odd number of coins against an even number of coins, a weighing that will
not yield anything useful. We have our contradiction.

Interestingly, the original upper bound is achievable if you are given some-
thing with which to balance the number of coins on the scale at the first weigh-
ing! For instance, if you are given a coin which you know to be true, then you
can actually get that upper bound’s worth out of your weighings!

Ternary logic

But back to our problem, where our upper bound is now one less at 1 (3% — 1)
(after adding on the ‘extra” coin from knowing that there exists a fake coin).
Great! But is this new upper bound attainable? The case of £ = 3 (with 13
coins) suggests that it is. Indeed it always is! Let’s see why.

First assume you know that the fake coin is heavier than all the rest, and that
there exists at least one fake coin. In this case we can actually distinguish
amongst 3 coins. The method is to utilise a ternary number system, and using
each weighing to pick out a single digit of the coin’s ternary representation.
Let the three outcomes of each weighing be 0 (left side heavier), 1 (balanced)
and 2 (right side heavier). Then label the 3* coins from 0 to 3* — 1 in ternary,
(for example: 000, 001, 002, 010, ..., 220, 221, 222). Now first weigh the coins
with 0 in the first digit against coins with 2 in their first digit, knowing that
there will be the same number of coins on each side of the scales. Secondly

L1f the left hand side is any smaller, then x4y would be larger, and each side of the scale would

be > %(3’“‘1 — 1), which we cannot handle.
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weigh coins with 0 in their second digit against coins with 2 in their second
digit. Continue in this manner with one weighing for each of the k digits.
Suppose the outcomes of the weighings were 0, 1, 2, 0, 2 and 1. Then the fake
coin would be coin 012021. Easy.

So we try the same technique not knowing if the fake coin is lighter or heavier.
Now we are unable to distinguish between ‘mirror-pairs’ (e.g. 102 and 120, 010
and 212 etc) because we wouldn’t know if it was coin 102 which was heavier or
coin 120 which was lighter. So we can take at most one coin from each mirror-
pair. But we also know we have a maximum of %(3"C — 1) coins, so we need to
leave one of the mirror-pairs out completely. So leave out {0...0,2...2}.

Now we just need to ensure that we can make a choice of one from each
mirror-pair so that for each digit there is an equal number of 0’s as there are
2’s. This is essential so that we have an equal number of coins on each side of
the scales for each weighing.

The right choices

Proving that such a choice is possible is a simple matter of induction. For
k = 1 we are only left with the coin labelled 1, so we just pick that. Assume
that we can choose them appropriately for £ = ¢t. Now for k =t + 1, we look
at the first ¢ digits of each coin, and select them as we would had we been
dealing with £ = ¢. This selection is fine when we leave out 111...110 and
111...112, as it will not contain any mirror-pairs. And this selection will match
up the 0’s and the 2’s perfectly for the first ¢-digits. Also, for the last digit,
each selection contains the three coin triplet ending with 0, 1 and 2, so the last
digit has an equal number of 0's and 2’s. Now we are just left with the coins
{000...001,000...002},{111...110,111...112} and {222...220,222...221}.
We then simply pick 000...001, 111...112 and 222...220 to complete the selec-
tion.

For example, with £ = 3 we can pick the following coins:
{001, 010,011,012, 111, 112, 120, 121, 122, 200, 201, 202, 220}

Then we are done. Just do the same sequence of weighings as before, and then
see which of the mirror-pairs can be associated with the final weighing output.
The sole member of that mirror-pair presenting our choice of coins will be the
one that is fake!

So the maximum number of coins you can find a fake coin amongst with 3
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weighings is 13, as the original conundrum anticipated. But in order to gener-
alise this rather easy problem, we just had to make it more difficult!

Multiple fake coins

A natural extension to this problem is that where you have some unknown
number of fake coins. This problem is left for the reader to try:

Given n coins, where n is even, show that with at most |22 weighings you can divide
your coins into two piles, where one pile consists entirely of fake coins and the other
entirely of real coins (where [k] is the integer part of k).

Clearly, without any additional information about the number or type of fake
coins, you are unable to tell which pile is which. You may end up with all the
coins in one pile, in which case you are unsure if all your coins are real, or all
your coins are actually fakes!

Even more heights to ‘scale’

Another interesting extension is to determine a single fake coin amongst many
where your equipment is not a two-pan balance but a set of scales which give
you a numerical reading. With 3 weighings it is known that you can find a
fake coin amongst 6. But is this the best you can do with 3 weighings? What is
the best you can do with k£ weighings? If you find solutions to these problems,
Paradox would like to hear from you!

— Stephen Muirhead

Puzzle 1.
To solve /1 — z + /= — 3 = 1, we cube both sides:

1—2)+3V1l—avVr—-3(V1—a+ Ve —-3)+(x—-3)=1.

Replace the expression in brackets by the initial equation, we
get /1 —axv/x—3=1.

Taking the cube again gives 22 — 4z + 4 = 0, S0 z = 2. Substi-
tuting 2 back, one obtains v/1 — 2+ /2 -3 = —-2,s01 = —2.

Puzzle 2:

You and a friend try to guess the year on a coin; the closer
guess wins. You get 2 guesses and your friend 1, plus you get
to choose who goes first. What is your best strategy?




Page 10 [ssue 1, 2008 Paradox

Great Quotes:

Gauss:

“It is not knowledge, but the act of learning, not possession but the act of
getting there, which grants the greatest enjoyment.”

“It may be true, that men, who are mere mathematicians, have certain specific
shortcomings, but that is not the fault of mathematics, for it is equally true of
every other exclusive occupation.”

“There are problems to whose solution I would attach an infinitely greater
importance than to those of mathematics, for example touching ethics, or our
relation to God, or concerning our destiny and our future; but their solution
lies wholly beyond us and completely outside the province of science.”

*
Pascal:

“The sole cause of all human misery is the inability of people to sit quietly in
their rooms.”

*

The University of Melbourne, Faculty of Science, Board of Review minutes,
1978:

“Computer science had the absolute highest pass rate due to the large num-
bers in the course.”

*

If I have seen farther than others, it is because I was standing on the shoulders
of giants. — Isaac Newton

In the sciences, we are now uniquely privileged to sit side by side with the
giants on whose shoulders we stand. — Gerald Holton

If I have not seen as far as others, it is because giants were standing on my
shoulders. — Hal Abelson

Mathematicians stand on each other’s shoulders. — Carl Gauss
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Mathematicians stand on each other’s shoulders while computer scientists
stand on each other’s toes. — Richard Hamming

It has been said that physicists stand on one another’s shoulders. If this is the
case, then programmers stand on one another’s toes, and software engineers
dig each other’s graves. — Unknown

Maths Jokes

A mathematical biologist spends his vacation hiking. One day, he encounters
a shepherd with a large herd of sheep. One of these cuddly, woolly animals
would make a great pet, he thinks.

“How much for one of your sheep?” he asks the shepherd. “They aren’t for
sale,” the shepherd replies.

The math then says: “I will give you the precise number of sheep in your herd
without counting. If I'm right, don’t you think that I deserve one of them as a
reward?” The shepherd nods.

The math biologist says: “247.”

The shepherd is silent for a while and then says: “You're right. I hate to lose
any of my sheep, but I promised: one of them is yours. Have your pick!”

The math biologist grabs one of the animals, puts it on his shoulders, and
is about to leave, when the shepherd says: “Wait! I will tell you what your
profession is, and if I'm right I'll get the animal back.”

“That’s fair enough.”
“You must be a mathematical biologist.”
The man is stunned. “You're right. But how could you know?”

“That’s easy: you gave me the precise number of sheep without counting —
and then you picked my dog.”

00
A mathematician believes nothing until it is proven;

A physicist believes everything until it is proven wrong;
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A chemist doesn’t care;
A biologist doesn’t understand the question.
00

To mathematicians, solutions mean finding the answers. But to chemists, so-
lutions are things that are still all mixed up.

00
The graduate with a Science degree asks, “Why does it work?”

The graduate with an Engineering degree asks, “How does it work?”

The graduate with an Accounting degree asks, “How much will it cost?”

The graduate with a Liberal Arts degree asks, “Do you want fries with that?”
00

Biologists think they are biochemists,

Biochemists think they are Physical Chemists,

Physical Chemists think they are Physicists,

Physicists think they are Gods,

And God thinks he is a Mathematician.

00

Q: Why didn’t Newton discover group theory?

A: Because he wasn’t Abel.

00

Top 10.0 reasons to be a statistician

1. Estimating parameters is easier than dealing with real life.
2. Statisticians are significant.

3. Talways wanted to learn the entire Greek alphabet.
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10.

o0

The probability a statistician major will get a job is > .9999.
If I flunk out I can always transfer to Engineering.

We do it with confidence, frequency, and variability.

You never have to be right — only close.

We're normal and everyone else is skewed.

The regression line looks better than the unemployment line.

No one knows what we do so we are always right.

Q: What do you get when you add 2 apples to 3 apples?

A: An American senior high school math problem.

o0

Q: What is 8 divided in two parts?

A: Vertically it is 3, horizontally it is 0.

o0

Q: What's the difference between the radius and the diameter?

A: The radius!

0@

lis your imaginary friend.

0.9

Definitions:

Dilate: to live long

Free product: things at no charge

Centre of mass: the priest

0.9
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Beer, Fashion, and Geometric Constructions

Now that I have your attention, let’s begin with part 1:

1. Geometric constructions

With the graphics card yet to be invented for another 2000 or so years, how
do you suppose the ancient Greeks spent their spare time? Well, for the math-
ematically inclined, they played a graphical gamed called Straightedge and
Compass Construction, with unparalleled elegance and simplicity. Its rules,
in modern notation, are as follows:

1. We start with two given points, (0,0) and (1, 0). Note that a unit distance
is hence given. These points are by default constructible.

2. We may draw a straight line through any 2 constructible points using the
straightedge; we may draw a circle with centre at 1 constructible point
and passes through another.

3. Intersections of all constructed lines and circles are now constructible.

As you can see, this is a game for people in the following categories: those
with an enquiring and precise mind, those obsessed with rigour and neatness,
perfectionists, or narcissistic lunatics.> However, over the years the game has
survived, possibly due to the ascetic beauty and exactness it exudes.

To make a point that at least something can be constructed from the decep-
tively trivial rules, we bisect a segment AB. Firstly, A and B must have been
previously constructed (or given at the start). We can draw a circle centred
A and through B, and another centred B and through A. They intersect say
at C and D. We draw a line through C' and D; by symmetry, this line is the
perpendicular bisector of AB.

Note that the straightedge (or ruler) has only 1 edge, is arbitrarily long, and
has no markings on it. The compass is collapsible, that is, after drawing each
circle, the legs fall back together. So we cannot simply lift the compass and
“carry” a distance, but this can be overcome by several algorithms,? so after

2Centuries after people proved certain constructions to be impossible, plenty of avid “circle
squarers”, barely knowing the above rules, delude themselves with their “important discoveries”.
Squaring the circle means to construct a square with the same area as a unit circle.

3For instance by constructing a parallelogram — the interested reader may want to give this a

g0.
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all we can use it as a normal compass. Also note that a point is constructible if
it can be obtained by the above procedure in a finite number of steps.

Using these algorithms, it should be fairly straightforward to bisect an angle,
draw parallels or perpendiculars to a line, transfer segments and angles, and
divide a segment into n equal pieces. (For the last one, think parallel lines.)

Some of the most aesthetically pleasing objects to construct are the regular
polygons. The square is rather trivial. The regular hexagon is also trivial (mark
off radii in a circle); from this we also get the equilateral triangle. The regular
pentagon, however, is not as easy, and following diagram shows how it can be
done.

D

C

We draw two perpendicular diameters of the circle, AB and C'D. Now con-
struct E/, the midpoint of AO. Using E as centre and E D as radius, draw an arc
which intersects BO at F'. Now DF' is the required side length of an inscribed
regular pentagon.

Note the appearance of the golden ratio in the diagram: OD/OF = FA/OA =
@. We also have a bonus result: OF' is the side length of an inscribed
regular decagon. The proof of both constructions come from the knowledge
that sin 18° = ¥5-1,

So polygons of sides 3, 4, 5 and 6 can be constructed. It is easy to double the
sides of any constructed polygon: you either bisect an angle or an arc. The
Greeks also found how to construct the 15-gon: what you do is construct an
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equilateral triangle and a regular pentagon in the same circle, sharing vertex
A. Now, the angle (measured from the centre) between first vertex away from
A of the pentagon and the triangle is 120° — 72° = 48°. Bisecting this angle
gives the required central angle for a 15-gon.

In fact, a more general argument is possible. Say we can construct a regular
n-gon and an m-gon, where m and n are coprime. We can certainly add angles
together. Working in degrees, we add the two central angles together and

get W. There exists k such that k(m + n) = 1 mod mn; so copy the
angle k times around the circle, and we get an angle of 222, So an mn-gon is
constructible.

Of course, the condition of m and n being coprime is a bit strong for the
Greeks, because from their initial set of constructible polygons, we can only
get n-gons where n = 2%3°5¢, where b and c are either 0 or 1.

Well, are there any other constructible regular polygons? The problem re-
mained open for thousands of years until the 17 year old Gauss, pitying the
mere mortals who went before him, decided to give it a go, by first studying
the regular heptagon. He solved the problem when he was 18.* He showed
that the 17-gon is constructible. Legend goes that he requested a heptadecagon
to be engraved on his tombstone, which was not carried out, possibly due to
the number of sides rendering it similar to a circle, or the fact that this is only a
legend. However, there is a monument of Gauss in his hometown, Brunswick,
with a 17-pointed star. Gauss showed five years later that the n-gon is con-
structible if and only i n = 2@ [1p;*, where qa; is either 0 or 1, and p; are

Fermat primes: primes of the form 22" 4 1. The only known Fermat primes

are 3, 5,17, 257 and 65537; Euler showed that 22° + 1 is not prime by quickly
factorising it as 641 x 6700417. A (not necessarily correct) construction for a
regular 65537-gon was first given by J. Hermes in 1894; he spent 10 years com-
pleting the 200-page manuscript. If you decide to carry it out, it’ll look very
round.

One of the simplest constructions for the regular 17-gon is given below; you’ll
need to know that BO = VTO, /OBC = ZOBV/4,/CBD = 45°; C is the
centre of the smallest circle.

41t is commonly quoted as 19, but that was when he decided to publish to result.
5There is doubt on the “only if” bit, for he did not include a proof. However, Wantzel (see
below) was able to complete the proof.
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Pierre Laurent Wantzel (1814-1848) was a French mathematician. In 1837,
when still an engineering (!) student, he was the first to publish a proof of
the impossibility of constructing a polygon not in the form above. He was
also the first to show that the problems of doubling the cube and trisecting
the angle were impossible using only compass and straightedge. Those were
two of the three great geometric problems of antiquity; the third, squaring the
circle, was left to Lindemann in 1882, who showed 7 is transcendental.

A few more words on our hero here. Wantzel was a child prodigy, surpassing
his teacher at an early age; at nine, the teacher sent for him when he encoun-
tered a difficult surveying problem. At the age of 15, he edited a book on arith-
metic (making new proofs on the way; arithmetic was much more impressive
back then). He was the first to come first in the entrance examination to the
Fcole Polytechnique and the Ecole Normale. In 1845, he gave a new proof
of the impossibility of solving all algebraic equations by radicals. He died at
a young age, possibly because of overwork; he was said to be “alternatively
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abusing coffee and opium”.

The polygon proof is fairly straightforward if you know about cyclotomic
polynomials and some Galois theory,® but let’s not bother with it here. Instead,
we show that the simplest non-constructible polygon is indeed the heptagon.

To proceed, we must see what can be done using the rules of the game. We
note that the constructible numbers (defined as either of the coordinates of
constructible points) form a field. Clearly, we can add or subtract 2 con-
structible numbers. To construct ab, where a and b are constructible numbers,
we simply form a triangle with shorter sides 1 and a, and a triangle similar to it
with a shorter side b. Then another side is ab. We can also obtain - “similarly”.

So the set of all constructible points at least contains Q. We can also take the
square root of a: construct AB of length a + 1, and draw a circle using AB
as the diameter. Let C' on AB be 1 unit from A, then the distance from C to
the circle and perpendicular to AB is \/a. A proof again comes from similar
triangles. Now when we draw circles and lines through constructible points as
per the rules, we may find their intersections using coordinate geometry, that
is, find the new constructible points. Now the equation of a circle is second
order, so by solving the simultaneous equations, we find that the points of
intersection require the usual operations, plus only one more operation, the
taking of square roots. Hence we can describe this field: take QQ, we append
all the square roots of its (positive) elements to it to form a larger field; now
take this field and append all the square roots. .. Hence any constructible point
must have, as the technical term goes, a degree extension of 2" over Q. It is
then intuitive that any number with a minimal polynomial of degree # 2™ is
not constructible. A more detailed and rigorous treatment can be found in the
third year Algebra subject, or whatever fancy name it will be called under the
New Melbourne Model, if it survives at all. For cubics which concern us here,
there exists more elementary but rather lengthy proofs of the above fact. So
for example, a number like

\/%+é\/?+\/5+\/6(5+\/5)

is constructible (it happens to be cos 3°), but V/2 is not, rendering the problem
of doubling the cube intractable.

®Basically showing that the order of the polynomial must be a power of 2; and conversely, the
cyclotomic extension has a cyclic Galois group, and its chain of subgroups corresponds to a tower
of quadratic extensions.
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Now suppose the heptagon is constructible, then clearly so is z = 2 cos 2. Let
t = 2Z. Then, applying the double angle formula twice, we get 2(2(£)?—1)% —

1 = cos4t. But cos 4t = cos 3t = 4 cos® t—3 cost = 4(%)?—3%, so equating them
gives 3 —z?—2x—1 = 0. Itis easily checked that this has no rational roots, and

hence is irreducible. But its degree over QQ is not a power of 2, contradiction.

So how do we get around this problem, for after all, doesn’t the heptagon
feature prominently on the Australian flag?” The star on the flag is reproduced
below; the ratio of the radii is 5. Incidentally, there were only 6 points on the
stars on the original flag, representing the six states. The seventh was added in
1908 to represent the Territory of Papua and future territories.® The first way
get around the problem is to approximately construct a heptagon, which will
do if we want to print off a flag, or something. The other way is the bend the
rule of the game. Neusis construction will do the trick, as we will see. Another
way to do it exactly is via the rich art of paper folding!

Now to approximate a heptagon, we could find a value close to 2sin 7. An
early attempt was made by Heron (or Hero) of Alexandria (circa 10 - 70 AD),
an engineer and geometer. He is credited with the invention of the first steam-
powered device, the first wind-powered device (operating an organ), and the
first vending machine (a coin which gives a set amount of holy water, using
a lever activated by the weight of the coin until it fell off). He also made an
entirely mechanical play about ten minutes long, powered by a binary-like
system ropes and simple machines. He is best known for the formula for the
area of a triangle which bears his name, but this was not his invention, for
Archimedes knew the formula.

Anyway, Heron used the value of @, which is about 0.2% off. By using con-

tinued fractions, one can obtain the easily constructible value of 12, which is

7But not on the wimpy New Zealand flag.
8Northern Territory was separated from South Australia in 1911, ACT was formed in the same
year, and curiously Jervis Bay Territory was considered separate in 1989.
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only 0.13% off. This profoundly useless observation was allegedly first dis-
covered by yours truly, at the age of 8, and to this day remains the pinnacle of
his intellectual achievement. To carry out the construction, we set up perpen-
dicular radii on the circle, and from the centre, mark off % of one radius and
5 of another. The distance between the two points is approximately the side
length of an inscribed regular heptagon. Of course, one can resort to contin-
ued fraction convergents of larger denominators, or quadratic approximations

(for instance, 5*/3_1 is even better).

A nonagon (enneagon) can be constructed using a similar method to the hep-
tagon, using 15 as an approximation (the error is 0.05%). Note that one can
easily prove that a nonagon cannot be contructed exactly using the ruler and
compass, using a similar method to the heptagon case; this means an angle of

120° cannot be trisected, settling the problem of angle trisection.

To construct a heptagon exactly, we can use “Neusis” construction. The word
approximately means “verging”, and this is its additional feature: the ruler has
a unit length marked on it. Now, the ruler may pass through a point, such that
each end of the unit length falls on a constructed line or circle, and then a line
may be drawn along the ruler. It can be seen that in general, there are 4 ways
to verge from a point to two intersecting lines, hinting that degree-4 equation
is to be solved. Indeed this is the case, and it turns out we can solve all cubics
and quartics.” Below we give the Neusis constructions for 1) trisecting an
angle, 2) finding cube roots, and 3) drawing the regular heptagon. Note that
now we can also draw the nonagon. The full power of Neusis construction is
currently not known, despite its origin tracing back to at least 400 BC.

9To solve a quartic, we only need the cubic formula, which is too large for this footnote; so
whatever constructs cubic roots can also solve quartics.
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172

1) This method is due to Pappus. To trisect angle AOB, where AO = 1, con-
struct AD parallel to OB, AC perpendicular to OB. Now use the marked ruler
to find £ and F, where EF' = 1. Then FOB is the required angle. To prove
this, construct (in your mind and not on paper, if you wish) the midpoint of
ED, and join that up with A; now do an angle chase.

2) This is due to Nicomedes. To find V/k, let AB = %, and construct C, D, E, F
accordingly (E'F is parallel to AB). Now verge from E such that GH = 1;
BH = z = Vk. To prove this, note that by Pythagoras, (1+y)? = (12— (£)2)+
(x + %)2. As GFE and GBH are similar, y = 4. Now solve.

3) ABCD is a unit square. EC is an arc with centre B. We verge from A, so EH
is 1 unit. Then angle AH B is an internal angle of a regular heptagon. To see
this, let AH = x, and the angle be . Then the cosine rule tells us that 222(1 —
cost) = 1,22 — 2zxcost = 1. Eliminating z yields the minimal polynomial
for cos 3%, which can be readily recognised from the minimal polynomial for
2 cos 2F above.
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There is also a “match stick” construction for the regular heptagon, and the

proof is surprisingly an angle chase. The angle BAC'is 122",

Of course, one may believe that the original rules of the game are so simple
that they cannot be made any simpler. However, it is surprising to know that
we can neglect either the compass or the straightedge, and given a slightly
different set of starting conditions, we can achieve the same constructions!

The Steiner construction only involves the ruler, and a starting unit circle, plus
the points (0, 0), (2,0) and (0, 2). (Steiner has been considered the greatest pure
geometer since Apollonius of Perga.) Now it can be checked that this starting
set, plus the ruler, gives a field (that is, the constructible points are closed
under the four basic operations).

A proof is based on the following diagram, which states that when AB is par-
allel to CD, E thus constructed is the midpoint of AB. The interested reader
may wish to prove this and its converse (assuming F is the midpoint, show



Paradox [ssue 1, 2008 Page 23

that C'D is parallel to AB). As the starting set quickly yields 3 equally spaced
horizontal lines and 3 equally spaced vertical lines, any line meets a set of
them to give a segment with a midpoint, so we can draw parallels. The above
process can be repeated so that AF = 3 AB. Using these tricks we are able to
carry out the four operations and get Q.

So we just need to be able to take the square root to achieve what can be done
using the compass and ruler. That’s when the circle comes in. We make the

observation that
z+1 z—1
_ 1— 2
vz 2 \/ (z - 1) ’
now |£-| < 1, so it can be thought of as (or actually transferred to be) an

x-coordinate on the circle; then the expression in the square root is simply the
y-coordinate.

Analogously, the amazing Mohr-Mascheroni construction uses only the com-
pass, although a proof here is much more complicated. Mohr was the first to
prove it in 1672, and his work was unknown to Mascheroni. One needs to first
show that you can reflect a point using just a compass (try it). This allows it
to carry distances. We also figure out how to multiply or divide a segment
by n. We then show that the intersection of lines or circles joining compass
points have a compass constructible intersection. This requires the solutions
of Napoleon’s problem (divide a circle into 4 equal arcs using just the com-
pass), solved by the emperor’s friend Mascheroni (who's better known for the
constant named after him and Euler). This implies we can carry distances,
so the points form a field. And so all ruler and compass points are compass
points, so we get the same field as the former.

On the next issue, we might continue with parts 2 and 3 of the article. Maybe.

— James Wan
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True Stories

Richard Feynman was once called in on a consulting job, and was presented
with some very complicated blueprints of a nuclear reactor which he could not
understand. He stared at them for several minutes, then, to avoid embarrass-
ment, he pointed to something and said, “is that a window?” The engineers
in the room got excited and said, “oh, we see what you mean. The ventilation
should go here. Then the pressure can dissipate there. If we do that, then the
fission...” Soon the problem was solved, and they credited it to Feynman’s
advice.

Feynman also offers this advice: “if anyone asks me a question, I always say,
‘differentiate under the integral sign.” More than half the time this will solve
the problem. And, even if it doesn’t, they will think you are a really smart

77

guy-

Paul Dirac once made a mistake in a question which he wrote on the black-
board. A student raised his hand and said, “Professor Dirac, I do not un-
derstand equation (2).” Dirac continued to write on the board. The student
assumed that Dirac had not heard him, and repeated what he just said. There
was no reaction. A student in the first row intervened, “Professor Dirac, that
man is asking a question.” Dirac paused, and replied, “oh, I thought he was
making a statement.”

Dirac was once in his garden, when postman came with a delivery. The post-
man asked him, “is professor Dirac in this house?” Dirac replied, “no.”

J . J. Sylvester once sent a paper to the London Mathematical Society for pub-
lication. He included a cover letter asserting that this was the most important
result in the subject for 20 years. The Secretary replied that he agreed with
Sylvester’s assessment, but that Sylvester had already published the result
five years earlier.

Sylvester once gave a speech on the conciseness of mathematical expressions:
one can express pages of thought in just a few symbols. Thus, his comments
would be painfully brief. He finished three hours later.
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Useful Theorems and Methods for First-years

This article aims to give a very brief introduction to some theorems and meth-
ods which I have found somewhat useful in first-year mathematics. They are:
Pappus’ theorem for surface areas and volumes, determinant formula for the
cross product, Descartes’ rule of sign, and synthetic division for linear factors.

There are generalisations for some of the methods. To find out more, such as
proofs of these theorems, I suggest you do your own research. For example,
the proof of Pappus’ theorem is straightforward, provided you know how to
locate a centroid. The proof of Descartes’ rule is more involved.

Pappus’ theorem for surface areas/volumes of surfaces/solids
of revolution

These are two very simple and somewhat intuitive equations.

Pappus’ theorem for volumes states that the volume V' of a solid of revolution,
generated by rotating a plane region R about an axis, is give by the distance
traveled by the centroid of R times the area of R (of course, the axis is coplanar
with R and does not lie in its interior). So, if a is the distance from the axis to
the centroid, and A is the area of R, then

V = 27maA.

For example, the volume of a torus formed by rotating a circle of radius r

around an axis a away from its centre is 2ra x 7r? = 2w2ar?,

Alternatively, the last result can be derived by directly applying the formula
for the volume of a solid of revolution, but this requires many more steps.

Pappus’ theorem for surface areas is an analogous equation; it states the sur-
face area of a surface of revolution (5) is L, the arc length of R, times the
distance traveled by the centroid:

S = 2mal.
For example, the torus has a surface area of 277 x 2wa = 4w2ar.
3 x 3 determinant formula for the cross product

There is a bonus for remembering how to calculate the determinant of a 3 x 3
matrix. The cross product of 2 vectors a = (a1, az,as3) and b = (b1, by, b3) in R?
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is given by:
i j k
axb= ai as as
by by b3

Descartes’ rule of sign

A very simple rule which tells you how many real roots a polynomial may
have.

The rule is as follows: let P(z) = a,x™ + - - - + a1z + a, where a; are real, then
the number of positive roots of P(x) is equal to the number of times the signs
of 2 consecutive coefficients change; or less than that by a multiple of 2. Note
that roots with multiplicity k are counted as k roots.

For example, P(z) = z° — 2* + 32® + 922 — x + 5 may have 4, 2, or 0 positive
roots, because the coefficients change sign 4 times (between z° and —z*, —z*
and 3z3, 922 and —z, —x and 5).

Also, the graph of P(—x) is that of P(x) reflected about the vertical axis, so
applying Descartes’ rule to it gives the maximum number of negative roots.
So we see that P(—z) = —a® —2* — 323 + 922 4+ x + 5 has exactly 1 negative root
(because it can’t have a negative number of roots). By the same argument, any
polynomial with only 1 sign change has exactly 1 positive root.

Another example. If P(z) = z* + 9z + 5, then it has no positive root by the
rule. By considering P(—z), we see that it has 1 negative root. As P(z) is a
cubic, it must have 2 more roots, both being complex. So we discovered the
nature of the roots without any computations.

Synthetic division for linear factors

Suppose you want to divide a linear factor into a polynomial (for instance,
you may need to do this to simplify an integrand). This can be done using
long division. However, a faster algorithm known as synthetic division might
save you a bit of time.

The algorithm is best shown with an example. Note the coefficient of z in
the linear factor must be 1 before applying the algorithm; if not, we can write
ar +basa(x+ g)

Divide = — 2 into 2% — 522 + 3z — 7.
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We first write out the coefficients of the dividend in a row, and put the under-
lined root of the linear factor after them.

1 =5 3 -7 2
Drop the first number down to the 3rd row:

1 =5 3 -7 2

1

Multiply the rightmost number in the 3rd row by the underlined number, and
put the result in the 2nd row of the next column:

1 =5 3 =7 2
2
1

Add up the 2 numbers in that column, and put the result in the 3rd row of that

column:
1 -5 3 -7 2
2
1 -3

1 =5 3 =7 2
2 -6 —6
1 -3 -3 13

The coefficients of the quotient and remainder are shown in the 3rd row. So

3_52 o 1
x x° + 3z 7:x2—3x—3— 3 .
r— 2 r— 2

— Wilson Ong

Puzzle 1 solution: an equation raised to a power is a conse-
guence of the original equation, but is not necessarily equiva-
lent to it, as it may produce more solutions.

Puzzle 2 solution: you guess 1 year above and 1 year below
your friend’s guess.
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Solutions to Problems from Last Edition

We had a large number of correct solutions to the problems from last issue.
Collectively, all problems were solved. Below are the prize winners. The prize
money may be collected from the MUMS room (G24) in the Richard Berry
Building.

The occupants of room 610, physics building may collect $5 for solving prob-
lems 1 and 3.

Hui-Shyang Lee may collect $17 for solving problems 2, 3, 4 and 6.
Wonki Noh may collect $8 for solving problems 3 and 4.
Gus Schrader may collect $9 for solving problems 3 and 6.
Geoffrey Gebert may collect $3 for solving problem 3.
Tharatorn Supasiti may collect $3 for solving problem 3.
Zhenda Yin may collect $3 for solving problem 3.

Duc Truong may collect $5 for solving problem 4.

Alan Chang may collect $5 for solving problem 4.

Kate Mulcahy may collect $5 for solving problem 5.

Sarah Traine may collect $6 for solving problem 6.
Michael Couch may collect $6 for solving problem 6.

1. You have a compass whose legs are set at a fixed distance apart. How can
you draw 2 circles of different radii on paper?

Solution: tear out a bit of paper, fold it a few times so its thickness is non-
negligible, and its other dimensions sufficiently small. Now put it on the re-
maining paper, put the sharp end of the compass on this elevated creation, and
draw a circle on the remaining paper. This circle will have a different radius.

We received a very creative (sometimes even unphysical) set of solutions from
room 610, physics building. It includes: modify the compass or introduce
another compass; stretch the paper uniformly in all directions, draw a circle,
then unstretch the paper; make a point on the paper for a O-radius circle; draw
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a straight line using 1 leg of the compass, creating a circle with infinite radius;
any drawn circle has finite width so there are infinitely many different circles
between the inner and outer edges.

We accept their solution of piercing a hole in the paper with the compass and
lowering 1 leg into the hole.

2. Can you tile a 18 x 18 board using only T-shaped pieces each made of 4
squares?

Solution: No. To see this, we alternatively colour the squares of the board
black and white. Then each T-shape would cover either 1 black and 3 white
squares (type A), or 1 white and 3 black squares (type B). Suppose that a tiling
exists, then we have z tiles of type A and y tiles of type B. Clearly, z + y =
182

=+ = 81, and the total number of blacks squares is = + 3y = % = 162. The

two equations yield 2y = 81, so y is not an integer, contradiction.
3. Prove that forrealsz + y + z = 1, 2y + yz + 22 < 5.

Solution: (from Hui-Shyang Lee)

l=(z+y+2)? = 22 +9>+2%+22y+ 2z + 222
I = By tyz e +g@ -yt gy -2+ 5z o)
1 > 3(xy+yz+ zx)
% > Y+ yz+zx

There were many solutions for this question, with techniques ranging from the
arithmetic mean-geometric mean inequality to finding the maximum using
calculus.

4. A bug crawls along the edges of a cube; at each vertex it has probability
of & of going to any adjacent vertex. When it reaches the vertex opposite its
starting one, enlightenment is achieved. What is the average number of edges
it must crawl on to do this?

Solution 1: we use conditional expectation. Start from 1 vertex, we must take
at least 2 steps, in which there is % chance of returning to the start, and %
chance of getting to 1 edge away from enlightenment. Let £ be the expected
value, then we have E = 2+ % + %F, where F'is the expected value of reaching
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enlightenment from 1 edge away. We need to take at least 1 step to do so, but
2 of the time we get back to 1 step from the start. Hence F' = 1 + 2(E — 1).
Solving for E, we get 10 as our answer.

Solution 2: (from Alan Chang) call the vertices 1 edge away from the start B.
Then it is clear that we can get to B with probability 1 in the first step. From
there, there is % chance of getting to enlightenment in 2 steps, and g chance of
returning to B in 2 steps.

Hence, the average = % -3+ g . % B = %ZZO:O(%)”(QTHL 3) = 10.

5. Any right triangle contains an isosceles triangles whose areas is at least a
times the area of the original triangle. Find the maximum value for .

Solution: after fiddling with the geometry of the situation, we see that there
are two types of contained isosceles triangles that are larger than the other

types:

Type A: one leg lies on the hypotenuse of the right triangle, the other leg coin-
cides with the latter’s second longest side.

Type B: the base coincides with the hypotenuse, and the opposite vertex lies
on the second longest side of the right triang]le.

As we are only interested in the ratio of areas, let the second longest side of

the right triangle be x and the shortest side be 1. We see that type A has area
x2+1
4z

and type B has area . They intersect at a point which gives the

2

T
2v27 417 X
minimum area, T = 14:/2; . It can be checked that a right triangle with this

given proportion cannot contain a larger isosceles triangle. Hence the best
value of ¢, using this value of z, is 23,

6. Flnd fOﬂ- mdx

Solution: let the integral be I. We make the sneaky substitution, z = m — ¢,

[T _t [T
then I = 0 1—|—c07;2(7r—t) dt = fO 1—|—ch2 azdx o I’ SO

o1 51
1=3 | et =7 [ syt
2 Jo 14cos?zx o l+cos?x

sec? x
tan? 42"

The last integrand is equal to

oo 1 _ =
Tl mpdt =55

Substituting t = tanz gives I =
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Paradox Problems

Below are some puzzles and problems for which cash prizes are awarded.
Anyone who submits a clear and elegant solution may claim the indicated
amount (unless two solutions are the same, in which case only the first sub-
mission will be rewarded). Either email the solution to the editor (see inside
front cover for address) or drop a hard copy into the MUMS room (G24) in the
Richard Berry Building; please include your name.

1.

($2) A die is thrown until a 6 is obtained. What is the probability that a 5
is not obtained before that? (Do this without a series.)

($3) A 3 x 3 x 3 cube can be cut up into 27 unit cubes. What is the
minimum number of straight cuts required to do this, if you are allowed
to move pieces around in between cuts?

($3) Show that the medians of a triangle can also form a triangle, with
area 2 that of the original one.

($4) Find the volume enclosed by the graphs of |z| + |y| = 1, |y| + |2| =
1|2 + 2] = 1.

($5) In an equilateral triangle ABC, point @) is on BC, and A(Q) meets the
circumcircle of the triangle at P. Prove that 1/PB + 1/PC = 1/PQ.

($5) Starting with one amoeba, every second it splits into either 0, 1, 2,
or 3 amoebae with equal probability. What is the probability that the
population eventually dies out? What if it can only split into 0, 1 or 2
amoebae with equal probability?

($6) It is well known that no four distinct integer squares can be in arith-
metic progression; it is obvious that three can. Find a way to generate all
of them.

($5) Find 3 ways to write 3 as the sum of 3 3rd powers of integers.

($6) In our article on constructions, an explicit formula for cos 3° was
given. Find an explicit formula for cos 1°; the simplest submission wins.

Paradox would like to thank Alisa Sedghifar, Stephen Muir-
head, Wilson Ong and Kate Mulcahy for their contributions to
this issue.
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